CITY OF HOUSTON DEPARTMENT OF PUBLIC WORKS AND ENGINEERING ## ENGINEERING DESIGN MANUAL FOR SUBMERSIBLE LIFT STATIONS Jon C. VandenBosch, P.E. Director Showri Nandagiri, P.E. City Engineer **OCTOBER 2002** ## ENGINEERING DESIGN MANUAL FOR SUBMERSIBLE LIFT STATIONS #### **TABLE OF CONTENTS** ## SECTION 1 INTRODUCTION | SEC1 | <u>TION</u> PAC | <u> 3E</u> | |------|---|------------| | 1.1 | Purpose | . 1 | | 1.2 | Coordination with Other Documents | . 1 | | 1.3 | Responsibility of Design Engineer | . 1 | | | | | | | SECTION 2 | | | | CIVIL DESIGN CRITERIA | | | 2.1 | Description and Design Capacity of Lift Stations | . 4 | | 2.2 | Hatch Loadings and Clear Opening Dimensions | . 5 | | 2.3 | Valve Vault Dimensions and Pump Spacing | | | 2.4 | Force Main and Pump Station Size Selection | | | 2.5 | Pump Selection | | | 2.6 | Efficiency and Pumping Cost | . 8 | | 2.7 | Prequalified Pump Manufacturers | | | 2.8 | Force Main Discharge Manhole | . 8 | | 2.9 | Receiving Sewer | . 9 | | 2.10 | Example of Construction of System Head and Pump Capacity Curves | | | | to Determine Actual Pump Operating Capacities | . 9 | | 2.11 | Wet Well Design | 13 | | 2.12 | Surge Pressure in a Force Main | 17 | | 2.13 | Comparison: Surge Analysis by Computer Programs | | | 2.14 | Surge Pressure Considerations | 21 | | 2.15 | Estimate of Surge Pressure in a Force Main | 27 | | 2.16 | Surge Relief Valves | 31 | | 2.17 | Pipeline Design | 34 | | 2.18 | CheckValves | | | 2.19 | Shut-Off Valves | 36 | | 2.20 | Blow-Off Valves | | | 2.21 | Air and Vacuum Valves | 37 | ## SECTION 3 STRUCTURAL DESIGN CRITERIA | Secti | | | |--------------|--|----| | 3.1 | Specification Codes | 0 | | 3.2 | Loads | 0 | | 3.3 | Buoyancy | .1 | | 3.4 | Design Stresses | .1 | | 3.5 | Design Considerations | 2 | | 3.6 | Detailing | 3 | | | SECTION 4 | | | | MECHANICAL DESIGN CRITERIA | | | 4.1 | General 4 | 6 | | 4.2 | Wet Well Ventilation 4 | 6 | | 4.3 | Valve Vault Ventilation | 7 | | 4.4 | Plumbing | | | 4.5 | Control Building Cooling 4 | 8 | | | | | | | SECTION 5 ELECTRIC POWER AND INSTRUMENTATION CONTROLS DESIGN CRITERIA | | | | ELECTRIC POWER AND INSTRUMENTATION CONTROLS DESIGN CRITERIA | | | 5.1 | Basic Data 5 | | | 5.2 | Electrical Drawing Set 5 | | | 5.3 | Electrical Symbols Legend, Lighting Fixture Schedule and Abbreviations 5 | | | 5.4 | Site Plan 5 | ,1 | | 5.5 | Electrical Plans and Sections | | | 5.6 | Typical Details | | | 7.7 | Control Building Plan | | | 5.8 | Control Cabinet Layout | | | 5.9
5.10 | Process and Instrumentation Diagrams | | | 5.10
5.11 | Control System Wiring Diagrams | | | 5.11
5.12 | Single Line Diagrams | | | 5.12
5.13 | Conduit Schedule | | | 5.13
5.14 | Device Ratings Schedule | | | 5.15 | MCC Elevation | | | | | _ | ## SECTION 6 NON OWNED LIFT STATIONS | Sectio 6.1 6.2 | on General Design Requirements | | 7 | |---|---|--------------------------------------|---------------------------------| | 6.2
6.3
6.4
6.5 | Wet Well/Vale Vault Design | . 58
. 6 | 8
1 | | 6.6
6.7
6.8 | Corrosion and Odor Control | . 63
. 64 | 3
4 | | | LIST OF TABLES | | | | 1
2
3
4
5
6
7 | Lift Station Configurations, Pumping, Ranges, Discharge Piping and Wet Well Sizes Pump Control Schedule Example Wave Speed in Steel and Cast Iron Pipe Wave Speed in Hobas Pipe Wave Speed in Other Plastic Pipe Classification of Force Mains in Pumping Systems Check List for Force Mains of Category "A" Items only | . 15
. 16
. 19
. 19 | 5
8
9
5 | | | LIST OF FIGURES | | | | I
2
3
4
5
6
7
8
9 | Pump Performance Curve System Head and Pump Capacity Curves Typical Construction of Multiple Pump Operating Curves Typical Wet Well Elevation Showing Pump Control Levels Example of Surge Relief Valve Size Selection Chart Example of Column Separation Determination Effect of Air Entrapment on Pump TDH Air Vacuum Valve Capacity Chart Structure Uplift Pressure and Resistance | . 17
. 16
. 33
. 34
. 35 | 1
1
6
3
4
5
9 | | | APPENDICES | | | | A.
B.
C. | General Drawing/File Information Structural Design Calculations Typical Electrical Design Calculations Examples | | | # SECTION 1 INTRODUCTION ## SECTION 1 INTRODUCTION #### 1.1 Purpose This Manual provides guidance and design criteria for use by Design Engineers developing site-specific drawings for new lift stations. The Design Guideline Drawings for Submersible Lift Stations are to be used with this manual as applicable. The purpose of these documents are to provide facilities that are consistent in quality and arrangement, throughout the City of Houston service areas. #### 1.2 Coordination with Other Documents In addition to this manual and the Design Guideline Drawings, the Design Engineer should be familiar with the Design Guidelines for Lift Stations and Force Mains, Equipment Prequalifications, and the City of Houston Standard Technical Specifications for further design criteria or other requirements that may be applicable to a specific project. #### 1.3 Responsibility of Design Engineer The overall responsibility of the Contracted Design Engineer is to select the Design Guideline Drawings that are applicable to a specific lift station design and modify the drawings as required. A list of specific design and other requirements that would be the responsibility of the Design Engineer includes, but is not limited to, the following tasks: - 1. Obtain from the City direction on which Instrumentation Level to use (I, II or III). - Determine if the site will include a control building. A control building should be used for all facilities with Level II or Level III control systems where space is available on-site. Verify the need for or exclusion of, a control building with City of Houston Wastewater operations. - 3. Determine which station configuration is required; Preferred, Secured Site or Exposed Site. - 4. Perform hydraulic calculations and develop system curves to determine sizes and quantities of the following: - a. Pumps and motors (identify acceptable models from at least three Prequalified manufacturers) - b. Discharge piping and valves - c. Header and force main - 5. Determine necessity of and/or sizes for: - a. Surge relief valve(s) If surge relief valve is required provide analysis in the Final Engineering Design Report for justification. - b. Air release valve An air release valve is required on all lift stations. - c. Air and vacuum valves - 6. Determine piping size for wet well ventilation. - 7. Determine size for valve vault ventilation fan(s) and air duct(s), if required. - 8. Determine depth of wet well, and wet well volume as it relates to pump controls. - 9. If a control building is used, determine the required length and verify or adjust the structural design, as necessary. Review CTE design calculations for the control building to verify adequacy and applicability to the project specific requirements. Provide revised or original calculations as needed to the tailor to the specific project. This is required to allow placing of the design engineer's registration stamp on the Drawings. Include design criteria and assumptions on the Drawings sufficient to obtain building permits. - 10. Review CTE design calculations for the wet well top slab (entire structure for 2-pump small lift stations) and valve vault (when used) to verify adequacy and applicability to project specific requirements. Provide revised or original calculations as needed to tailor to the specific project. This is required to allow placing of the design engineer's registration stamp on the Contract Drawings. - 11. Complete structural design for wet well walls and base slab. Provide buoyancy calculations. - 12. Determine whether caisson, open cut, or both types of construction should be designed and shown on the Contract Drawings based on project specific conditions. The caisson method is often preferred by contractors in the Houston area. Where either method is appropriate, both should be shown as options. - 13. Provide a complete listing of the structural design criteria for the lift station and any other related structures. The criteria should include materials, loadings and load combinations, major design assumptions, and design approach. This criteria should be included as an appendix to the Final Engineering Design Report. - 14. Obtain 2-year electrical service records from HL&P. Calculate the required storage capacity as defined by 30 TAC.317 and determine measures required to meet power reliability standards. - Complete and/or augment conduit and device rating schedules as necessary for specific project requirements. Determine service size from Guideline Drawings. - Obtain available fault current from HL&P and calculate fault ratings. Determine need for and size of power factor correction capacitors. - Coordinate with the City's project manager to initiate electrical service/application. - 17. Provide all details for site pavement cross section, joints, connection to existing pavement, curbs, sidewalks, etc. Control and/or expansion joints shall be shown located to reduce the potential for cracking. - 18. Remove all notes to Design Engineer (shown in Italics) from the Contract Drawings. Provide all information shown as *TBD* or as otherwise instructed in notes to Design Engineer. Revise sheet numbers, title block information, etc. as appropriate for
specific project contract drawing package. See Appendix "A", Figure A-5, for a general example. - 19. Dimensions on the Guideline Drawings which are modified by "max" or "min", but which need to be selected as a definite dimension by the design engineer should have the appropriate dimension listed without the modifier. - 20. Complete additional designer responsibilities as described in this manual. - Provide Odor Control facilities if required. - 22. Edit and supplement the City of Houston Standard Technical Specifications as needed to apply to the specific project. Delete or indicate as "Not Applicable to this Project" where materials or equipment included in the specifications are not used for the specific project. - 23. Comply with the Landscaping requirements of City of Houston Ordinance No. 91-1701. - 24. Sign and seal final Contract Documents including Guideline Drawings modified or otherwise included in the Contract Drawings. - 25. Provide hydraulic analysis, if required, to justify use of baffle walls in the wet well. # SECTION 2 CIVIL DESIGN CRITERIA #### SECTION 2 CIVIL DESIGN CRITERIA #### 2.1 Description and Design Capacity of Lift Stations 2.1.1 The physical dimensions and range of design capacities of the Lift Stations are shown in the following Table 1. TABLE 1 LIFT STATION CONFIGURATIONS, PUMPING RANGES DISCHARGE PIPING AND WET WELL SIZES | Pump Station
Description | Individual Pump Capacity in GPM | | | Lift Station - Firm Design Capacity(1) in GPM | | Pump Discharge
Piping
In Inches | | |-----------------------------------|---------------------------------|--------------|-------------|---|-----------|---------------------------------------|-------------| | | From | То | From | То | From | То | | | 2 Pump 100 gpm | - | - | - | 100 | 4" | - | 6'-0" | | 2 Pump | 100 | 300 | 100 | 300 | 4" | - | 8'-0" | | 2 Pump | 250 | 500 | 250 | 500 | 4" | 8" | 11'-0" | | 3 Pump | 250 | 2000 | 500 | 4000 | 6" | 12" | 16'-6" | | 3 Pump | 2000 | 5300 | 4000 | 10,600 | 12" | 20" | 21'-0" | | 4 Pump | 500 | 2500 | 1500 | 7500 | 6" | 12" | 21'-0" | | 5 Pump:
3 large
2 small (2) | 2000
100 | 5300
1300 | 4000
— | 10,600
– | 12"
4" | 20"
12" | 25'-0"
- | | 6 Pump:
4 large
2 small (2) | 3500
100 | 5300
2000 | 10,500
– | 15,900
— | 14"
4" | 20"
12" | 27'-0"
— | ⁽¹⁾ Firm capacity (largest pump out of service) select range to provide velocity range in force main of 3 to 8 fps. ⁽²⁾ Small dry weather pumps are not to be considered in lift station firm capacity. 2.1.2 The physical dimensions of the wet well and valve vaults were sized to accommodate the maximum pipe and valve sizes required to pump the maximum range of pumping capacities per pump for each standard station as listed in Table 1. ## 2.2 Loadings and Clear Opening Dimensions for Hatches and Gratings - 2.2.1 Pump and valve vault hatches and valve vault grating shall be designed for 150 psf live loading. FRP grating in standard 48-inch (or less) panel widths shall be used. Provide galvanized steel support beams where required, space so as to avoid interference with access to valves or other mechanical items from above. - 2.2.2 The clear opening dimensions of the hatches for each Lift Station are shown on the Design Guideline Drawings. - 2.2.3 The Design Engineer shall verify the size and location of the hatch openings based on the selected pump size and manufacturer as well as the selected hatch manufacturer. - 2.2.4 The clear opening is area available to lift out pumps or valves when the hatch is open. This area is smaller than the concrete opening in the top slab or the area using the inside dimension of the frame. The reinforcement for the under side of the hatch cover reduces the clear opening of the frame. ### 2.3 Valve Vault Dimensions and Pump Spacing The dimensions of the valve vaults associated with each standard station are based on OSHA standard clearances from entrance ladders, piping, valves, and walls or beams. #### 2.3.1 Ladder Dimensions Minimum ladder width equals 16 inches. Minimum ladder clearance is as follows: #### a. Width: Center-line of ladder to edge of adjacent wall, valve, piping, or hatch clear opening equals 15 inches. #### b. Toe Depth: Center-line of ladder rungs to wall, grating support, or hatch clear opening equals 7 inches. #### c. Body Depth: Center-line of ladder rungs to wall, valve, piping, or hatch clear opening equals 30 inches. #### 2.3.2 Valve Vault Head Clearance Minimum vertical distance from valve vault floor or grate walking surface to bottom of top slab or beam equals 6 feet - 8 inches minimum. Open air valve vaults with grating over them must have enough depth for the air release valve(s) to fit on top of the discharge header and beneath the grating (a minimum vertical distance of 3' - 0"). #### 2.3.3 Valve Vault Pipe Spacing Minimum spacing between valve vault piping is based on OSHA requirements and 11 inches minimum between hatch openings. Dimensions shown on the Guideline Drawings are based on the following assumptions: - a. Two (2) Pumps with 8" discharge piping: Minimum spacing of 18 inches plus twice (2X) the smaller center-line to outside edge dimension of the largest recommended check valve, which is 35 inches. Note: The two pump station requires one (1) reverse arm check valve in order to maintain the minimum clearance of 18 inches. - b. Three (3) or four (4) Pumps with 12" discharge piping: Minimum spacing of 18 inches plus the total width of the largest recommended check valve equals 57 inches. - c. Three (3) or four (4) Pumps with 20" discharge piping: Minimum spacing of 18 inches plus the larger center-line to outside edge dimension of the largest recommended check valve equals 70.5 inches. #### 2.3.4 Pump Spacing Minimum spacing between the wet well pumps is directly related to the center-line spacing of the valve vault discharge piping. This spacing is to be verified by the design engineer in accordance with selected pump manufacturer's recommendations for proper pump operation. ## 2.4 Force Main and Pump Station Size Selection - 2.4.1 Force main size and pump station configuration should be based on sound engineering judgement and criteria provided below. Confirm all size and configuration selections with the City of Houston project manager and Wastewater Operations. - 2.4.2 The selection of the force main size is based on the velocity of minimum and maximum pumping volumes and the heads generated. The velocities in the force main should be a minimum of 3 fps for minimum flow and a maximum of 8 fps for maximum flow. Force main velocities higher than 6 fps should be checked for possible high and low - negative surge pressures during a power failure when all running pumps will stop suddenly. See Section 2.12 "Surge Pressures In A Force Main" for discussion. - 2.4.3 A wider range of force main velocities may be considered where there is a high variance between normal dry weather flow and peak wet weather flow. Minimum dry weather discharge velocity should not be less than 2.5 fps, and maximum velocity not greater than 9 fps. - 2.4.4 In order to accommodate wet and dry weather flow variations of approximately a maximum 4:1 ratio, the number of pumps selected must be analyzed. In general, an increased number of pumps should be used as the variance between wet and dry weather flows increases. - 2.4.5 The total number of pumps should be based on the largest pump as a standby. Therefore, a 4 pump station configuration with 4-1000 gpm pumps will have a design firm station capacity of approximately 3000 gpm. - 2.4.6 An example for selection of force main size and a 3 pump or 4 pump station configuration with a maximum design flow of 4.2 mgd is as follows: ``` Trial No. 1 - Use 16 - inch force main 4 pump station = 3 pumps @ 1.4 mgd - min. vel. one pump = 1.55 fps 3 pump station = 2 pumps @ 2.1 mgd - min. vel. one pump = 2.3 fps Total flow 4.2 mgd max. vel. = 4.65 fps ``` ``` Trial No. 2 - Use 14 - inch force main 4 pumps station = 3 pumps @ 1.4 mgd - min, vel. one pump = 2.76 fps 3 pumps station = 2 pumps @ 2.1 mgd - min, vel. one pump = 3.2 fps Total flow 4.2 mgd max, vel. = 8.8 fps ``` 2.4.7 The selection of the pump station configuration and force main size would be for a 3 pump station with a 14-inch force main. The velocity in the 16-inch force main with 3 pump or a 4 pump station would be too low, and the velocity in the 14-inch force main for either a 3 pump or a 4 pump station @ 8.8 fps would be within recommended criteria for the total flow of 4.2 mgd. #### 2.5. Pump Selection 2.5.1 The section above establishes the number of pumps and the capacity required to meet total design conditions. Once the number of pumps and the flows have been determined, a system head curve as detailed in the Section 2.10 must be completed. This system head curve will establish the actual flow of the selected pumps and motors operating individually or in combination with the other pumps when pumping against a variable friction head in the force main. The selection of the pump and motor must be based on pump manufacturer's pump curves as shown in Figure 2 and the following considerations relative to efficiency and pumping costs. #### 2.6 Efficiency and Pumping Cost 2.6.1 If the system head curve is rather flat, consisting of mostly static head, pump selection becomes unimportant in so far as operating power cost is concerned. This can be explained using the following equation: Cost of pumping 1000 gailons = (TDH x Cents/KWH)/Eff (%) x 3.185 - 2.6.2 If the station system head (TDH) is assumed to be a constant value which is equal to the static head in this case, then the cost of pumping 1000 gallons will not change whether it is pumped at a rate of 500 gpm for 2.0 minutes or it is pumped at the rate of 1000 gpm for 1.0 minute assuming either pump is equally efficient at the respective operating capacity. - 2.6.3
However, if the TDH is due mainly to frictional head loss with little or no static head, the operating power cost of a 1000 gpm pump will be 4 times as high as that of a 500 gpm pump, since the TDH of the pump is directly in proportional to the square of the operating capacity. - 2.6.4 Taking the pump efficiency factor at different operating capacity points into consideration the cost of operating a pump at 1000 gpm may be more than 4 times as great. It is therefore important to avoid over sizing a pump when one half of pump size will meet the average requirement. - 2.6.5 When two or more pumps operate together for the maximum flow condition care should be taken to insure that each pump will not operate near the shut-off point. For best results pumps should not be operated at less than 50% of the best efficiency point capacity nor be extended to beyond 120% of that capacity. This requirement may be achieved by changing the pump selection, or the force main size, or both. #### 2.7 Prequalified Pump Manufacturers 2.7.1 Refer to City of Houston Technical Specifications for manufactures prequalified to provide pumps, motors and appurtenances for City of Houston projects. During final design, the design engineer should confirm that at least three prequalified manufacturers can meet the specified conditions. #### 2.8 Force Main Discharge Manhole 2.8.1 To reduce hydrogen sulfide generation at the discharge end of force main, the discharge flow inside the discharge manhole should be steady, non-turbulent by setting the top of force main pipe to match the average flow depth inside the receiving sewer pipe. A new manhole receiving a force main discharge must be specified and shown on the drawings as a "corrosion resistant manhole". #### 2.9 Receiving Sewer - 2.9.1 The receiving sewer should be designed to handle the maximum pump discharge without surcharge. If two or more pump stations are served by one single sewer pipe, the probable maximum operating capacity of two stations combined should be determined. - 2.9.2 Unless the sewer line is long, grade is flat and over sized, there will not be enough storage capacity inside the sewer to smooth out the peaks of two pump stations when they are operated at the same time. Under these conditions the sewer as well as pumps down stream of it, should be designed for the total capacity of two pump stations. - 2.10 Example of Construction of System Head and Pump Capacity Curves to Determine Actual Pump Operating Capacities - 2.10.1 The selection of the pumps is based on the analysis of system head and pump capacity curves which determine the pumping capacities of the pumps operating alone and with the other pumps as the total dynamic head increases due to additional flow pumped through the force main. - 2.10.2 Piping head losses should be calculated in accordance with the Hydraulic Institute Standards in connection with head losses through lift station piping and valves. - 2.10.3 The C factors used in calculation of friction head losses should be based on both a C of 120 and C of 140. The pumps should be able to perform between the heads generated between these C factors. - 2.10.4 The pump motors should be non-over loading over the entire range of pumping, including the ability to pump into the force main under a flooded wet well condition. The water surface elevation for the flooded condition would be the rim of the lowest adjacent manhole or the underside of the top slab, which is lower. - 2.10.5 Refer to the section on Pump Design Conditions in the Design Guidelines Manual For Lift Stations and Force Mains. - 2.10.6 This example of the system head and pump capacity curves is based on the following conditions: - Force main = single and twin 26-inch force mains - Length = 15,500 If - Total flow ± 20,5 mgd - Total gpm = 20.50/1440 = 14,236 gpm - No. of pumps = 4 assuming one pump as standby - Minimum gpm per pump = 14236 divided by 3 = 4745 gpm - Select 4 5000 gpm pumps #### 2,10.7 Pump Curves 2.10.8 The pump performance curves represent the volume of liquid that can be pumped with a specified pump and impeller under a range of head conditions. The pump performance curves for the 5000 gpm pump used in this example is shown in Figure 1. It shows the gpm pumped in relation to the various head conditions and best efficiency point with impeller 510 and is tabulated as follows: | <u>GPM</u> | Head | |------------|------| | 0 | 124 | | 1500 | 108 | | 3000 | 93 | | 4500 | 78 | | 6000 | 63 | | 7500 | 48 | | 9000 | 33 | - 2.10.9 The above values are plotted in Figure 2 and represent the pump capacity curve for a single pump. - 2.10.10 Plotting Multiple Pumping Capacity Curves - 2.10.11 The values for multiple pump capacities are also shown in Figure 2. These values are arrived at by constructing the 2nd and 3rd pump capacity curves as a multiple of the Pump No. 1 curve as shown in Figure 3: Figure 1 Pump Performance Curve Figure 2 System Head & Pump Capacity Curve Figure 3 Typical Construction of Multiple Pump Operating Curves - 2.10.12 System Head Curve - 2.10.13 The system head curve represents the TDH generated by a variety of flows through the proposed or existing force main and includes the static head. As the flows through the force main increase the TDH also increases. - 2.10.14 The heads generated through the twin 26-inch force main are as follows: | TDH
<u>In Feet</u> | |-----------------------| | 21 | | 21 | | 24 | | 28 | | 33 | | 39 | | 43 | | 54 | | 63 | | 65 | | 79 | | | 2.10.15 The heads generated through a single 26-inch force main are as follows: | Flow Through | TDH | |-------------------|----------------| | Force Main in GPM | <u>In Feet</u> | | 0 | 21 | | 1500 | 24 | | 3000 | 32 | | 4500 | 45 | | 6000 | 63 | | 7500 | 65 | | 8300 | 88 | | 10,500 | 98 | | 12,000 | 172 | | 12,300 | 209 | | 14,250 | 250 | - 2.10.16 The values of the twin and single 26-inch force main are plotted on the system head and pump capacity curves as shown in Figure 2, and represents the system head curves for the single 26-inch force main and for the twin 26-inch force mains. - 2.10.17 Determine System Pumping Capacities For Multiple Pumps - 2.10.18 The actual pumping capacities are determined by the intersection of the system head curves for single and twin 26-inch force mains with the pump capacity curves as shown in Figure 2. - 2.10.19 The system pump capacities based on pumping into the single or twin 26-inch force main are shown as follows: Pump Capacities Using Single 26-inch Force Main | | Capacity | Total Pumping | | |--------------|--------------|-----------------|-----| | No. of Pumps | Increase GPM | Capacity in GPM | IDH | | 1 | 6150 | 6150 | 65 | | 2 | 1600 | 7750 | 88 | | 3 | 600 | 8350 | 98 | #### Pump Capacities Using Twin 26-inch Force Main | | Capacity | Total Pumping | | |--------------|--------------|-----------------|------------| | No. of Pumps | Increase GPM | Capacity in GPM | TDH | | 1 | 8300 | 8300 | 43 | | 2 | 4000 | 12300 | 65 | | 3 | 1950 | 14250 | 79 | 2.10.20 The above values illustrate the wide range of the 5000 gpm pump over the range of system head conditions. A single pump ranges from 6150 to 8300 gpm. The maximum required total pumping rate of 20.5 mgd or 14,236 gpm is achieved by three pumps pumping into the twin 26-inch force main @ a maximum rate of 14250 gpm. #### 2.11 Wet Well Design #### 2.11.1 Minimum Wet Well Volume 2.11.2 The minimum required volume of wet well storage occurs when the flow into the wet well is one half the maximum inflow. In order to calculate this volume a minimum cycle time between starts of 6 minutes should be used for motors less than 50 H.P. so that the motor will have a maximum of 10 starts per hour. The cycle time for pump motor horse power between 50 and 100 H.P. should be 10 minutes and the cycle time for pump motors over 100 H.P. should be 15 minutes. The formula for minimum wet well volume is: $$V = (Tmin \times QP) / (4 \times 7.5 gal/cf)$$ Where: Tmin = minimum cycle time in minutes QP = pump capacity in gpm V = volume in cubic feet - 2.11.3 An example calculation to determine the minimum wet well volume is provided below. This example illustrates the wet well volume requirements for a 4 pump station using the following parameters: - Max flow = 2370 gpm or 3.41 mgd - No. of pumps = 4 - Pump capacities = 4 @ 800 gpm - Cycle time = 6 minutes - 12 inch force main, 1600 feet long - Wet well surface area = 120 sf - 2.11.4 The first step would be to develop a system head curve which will show the actual pumping capacities based on the variable friction heads generated in the force main as each pump is turned on. Based on the system head curve pump no. 1 would pump 1080 gpm, pump no. 1 and 2 would pump 1980 gpm, and pump no. 1, 2 and 3 would pump 2370 gpm. Pump No. 4 is a standby. - 2.11.5 The wet well volume and corresponding pumping range in feet to accommodate the 6 minute cycle for each pump as they are turned on is: For Pump 1, V-1 = $$\underline{6.0 \text{ min. } x \ 1080 \text{ gpm}} = 217\text{cf}$$, H₁ = 1.8' 7.48 gpm/cf x 4 For Pump 2, V-2 = $$\underline{6.0 \text{ min. x } (1980-1080)}$$ = 180cf, H₂ = 1.5' 7.48 apm/cf x 4 For Pump 3, V-3 = $$6.0 \text{ min.} \times (2370-1980) = 78\text{cf}$$, H₃ = 0.7' 7.48 gpm/cf x 4 Total Wet Well Volume = 475cf, Total H = ± 4' 2.11.6 The following Table 2 shows the water levels (WL), and the heights (H) that water level rises or falls between pump stop and start, and indicates the pump status (either off or on). Table 2 PUMP CONTROL SCHEDULE EXAMPLE | Rising Water Level | | | Falling_W | /ater Level_ | | |--------------------|------------|--------|-------------------|--------------|------------------| | WL Elev. | <u>∆ H</u> | Action | Pump Station | Action | Pump_Status | | | | | | | | | 4.00 | | P-3 on | P-1, P-2 & P-3 on | | P1, P-2 & P-3 on | | 3.30 | 0.7 | P-2 on | P-1 & P-2 on | P-1 off | P-2 & P-3 on | | 1.80 | 1.5 | P-1 on | P-1 on | P-2 off | P-2 on | | 0.00 |
1.8 | | All Stop | P-3 off | All Stop | - 2.11.7 A typical section showing the start and stop control levels in a wet well is shown in Figure 4 on the following page. - 2.11.8 Determine the required size for the ports in the baffle wall. The dimensions of the ports should be stated on the structural drawings. Size ports such that the velocity through all ports at firm station capacity is greater than 4.5 fps and less than 6.5 fps. Figure 4 Typicol Wet Well Elevation Showing Pump Control Levels #### 2.12 Surge Pressure in a Force Main Surge pressure or "Water Hammer" in a force main is created by any change from a steady state flow condition, and may range from only slight pressure and/or velocity changes to sufficiently high vacuum or pressure conditions which may cause the collapse or rupture of the pipeline, or cause damage to pumps and/or valves. Water hammer is typically caused by the opening, closing or regulating of valves; or by the starting and/or stopping of pumps. The magnitude of the surge pressure created is a function of the following: - 1. A change in the velocity of flow. - 2. The density of the fluid. - 3. The speed of the pressure wave within the fluid and piping system. #### 2.12.1 Velocity of Pressure Wave The speed or velocity of the pressure wave is a function of the following factors: - 1. Pipeline material (steel, cast iron, ductile iron, plastic, etc.) - 2. Pipeline wall thickness - 3. Pipeline diameter - 4. The specific gravity and bulk modulus of the fluid being pumped. The relationship of these various factors is expressed in the following equation: $$a = \sqrt{1 \div w \times (1 + D \times C_1)}$$ $$g \quad K \quad e \quad E^1$$ Where: a = Pressure wave speed, expressed in feet per second (ft/sec) - D/e = A dimensionless ratio of the pipeline diameter to its wall thickness. - E¹ = Young's Modulus of Elasticity for the pipeline material, expressed in pounds per square foot (lb/sf) and which for steel pipe is 4,390,000,000 lb/sf; for cast iron pipe is 1,730,000,000 lb/sf; and for ductile iron pipe is 3,456,000,000 lb/sf. - K = Bulk Modulus of water, expressed in lb/sf and which is 43,200,000 lb/sf at 20° C. - w/g = Mass density of water, expressed in slugs per cubic foot which is 62.4/32.2 = 1.938 slugs/cf. C₁ = Coefficient of pipe support condition, which is dependent on Poisson's ratio (mu), which for most pipe materials the accepted mu = 0,3. Note: The usual range of C₁ is 0.85 to 1.25 and is determined as follows: C_1 for a pipe anchored at one end only, while the other end is free = 5/4 - mu = 0.95. C_1 for a pipe anchored at both ends = 1 - $(mu)^2$ = 0.91. C_1 for a pipe anchored at both ends with an expansion joint between anchors = $1 - \underline{mu} = 0.85$. 2 Also, the pressure wave speed in water is usually in the range of 3000 to 4000 ft/sec, and using a value of 3500 ft/sec is generally sufficient for approximations. #### 2.12.2 Approximate Wave Speeds Examples Pipes The following Tables 3, 4 and 5 show approximate wave speeds in various types of pipe based on the Modulus of Elasticity (E) as shown and Poisson's ratio (Mu) at the value of 0.3. TABLE 3 WAVE SPEED IN STEEL AND CAST IRON PIPES | | Wave Speed in f/sec. | | | |-----------|----------------------------------|----------------------------|--| | D/e ratio | Steel Pipe | Cast Iron Pipe | | | | E <u>=30 X 10⁶psi</u> | E=12 X 10 ⁶ psi | | | 25 | 4250 | 3750 | | | 50 | 3900 | 3250 | | | 75 | 3600 | 2900 | | | 100 | 3400 | 2600 | | | 150 | 3000 | 2250 | | | 200 | 2750 | 2000 | | TABLE 4 WAVE SPEED IN HOBAS PIPES | D/e ratio | (Wave Spe
Class 50 psi
E=0.5 X 10 ⁶ psi | eed in f/sec.)
Class 100 psi
E=1.2 X 10 ⁶ psi | Class 250 psi
E=2.8 <u>X 10⁶psi</u> | |-----------|--|--|---| | 12 | 1720 | 2450 | 3200 | | 16 | 1510 | 2200 | 2950 | | 20 | 1370 | 2000 | 2750 | | 25 | 1230 | 1830 | 2550 | | 50 | 890 | 1350 | 1950 | | 75 | 730 | 1110 | 1640 | | 100 | 630 | 970 | 1440 | TABLE 5 WAVE SPEEDS IN OTHER PLASTIC PIPES | (Wave Speed in f/sec.) | | | |-------------------------------|---|--| | | Other Plastic Pipe | | | E=0.113 X 10 ⁶ psi | E=1.20 X 10 ⁶ psi_ | | | 860 | 1130 | | | 750 | 990 | | | 670 | 890 | | | 603 | 800 | | | 428 | 570 | | | 350 | 460 | | | 300 | 400 | | | | H.D. Polyethylene Pipe
E=0.113 X 10 ⁶ psi
860
750
670
603
428
350 | | #### 2.12.3 Surge Pressure - Sudden Flow Stoppage The magnitude of surge pressure per unit change in the velocity of flow is expressed by the following equation, for the sudden or instantaneous stoppage of flow: $$h_w = av \div g$$ Where: h_w = pressure rise expressed in feet a = pressure wave speed expressed in ft/sec v = flow velocity of the pumped fluid in ft/sec g = 32.2 ft/sec² Thus, if a liquid is flowing at a velocity of 10 ft/sec through a pipeline and is brought to a sudden stop, the increase in pressure, or surge pressure, using a pressure wave speed of 3500 ft/sec is determined as follows: #### 2.12.4 Surge Pressure - Change in Flow If the velocity of flow within the force main is changed, but not completely stopped, the surge pressure rise is expressed by the following equation: $$h_w = \underline{a} (v_1 - v_2)$$ g Where: v_1 = original steady flow velocity expressed in ft/sec v_2 = final steady flow velocity expressed in ft/sec Thus, if a liquid is flowing at a velocity of 8 ft/sec while being pumped by two pumps, then one pump is stopped resulting in a flow velocity of 4 ft/sec, the increase in pressure or surge pressure, using a pressure wave speed of 3500 ft/sec is determined as follows: $$h_w = a (v_1 - v_2) = 3500 \text{ ft/sec}$$ (8ft/sec - 4 ft/sec) $g = 32.2 \text{ft/sec}^2$ $= 108.7 \text{ 1/sec} (4 \text{ ft/sec}) = 434.8 \text{ ft}$ $434.8 \text{ ft} \div 2.31 \text{ ft/psi} = 188 \text{ psi} \pm$ It should be noted that as a "Rule of Thumb" the above equations, $h_w = av \div g$ and $h_w = a/g (v_1 - v_2)$, will yield a surge pressure of approximately 100 ft of water (43.3 psi) per each 1 fps change in velocity. #### 2.13 Comparison: Surge Analysis by Computer Program It should be noted that the above equation represents the maximum surge pressure possible for a given situation. The equation works well for simple one pipe situations where near instantaneous flow velocity changes occur. In more complex situations, such as pumping stations or pipe networks, the use of this equation may tend to predict excessive pressures. These predictions then often lead to over design of pumping stations, pipelines, etc., which unnecessarily drives up project costs. A more detailed analysis using a computer model will often provide a lesser, but more accurate, design pressure and also provide insight into other potential problems such as minimum and negative pressures predicted as well as potential cavitation locations within a pipeline. The more accurate design pressures may allow the designer to specify less costly materials while still maintaining an appropriate safety factor. In complex situations, the cost of a thorough computer analysis is usually justified by total project savings. An example comparing the two methods is given below: Using the data for Example No. 1 (Section 2.15), the surge pressures predicted by the above equation is 294 psi. By constructing a simple computer model, the predicted pressures drop to 230 psi. By constructing a somewhat more complex computer model, the predicted pressures drop further to 137 psi. #### 2.14 Surge Pressure Considerations: #### 2.14.1 Pipeline Length For pipelines of infinite length, surge pressures resulting from variations in the velocity of flow through the pipeline are not affected in magnitude by the rate at which the velocity of flow is changed. However, this effect is not true in pipelines of finite length. This difference is significant in surge pressure phenomena in actual pipelines. #### 2.14.2 Wave Reflection In actual pipeline situations, surge pressure problems can become somewhat more complex because the end of the pipeline institutes the mechanism of wave reflection. That is, when the pressure wave reaches the end of the force main, it reverses direction and a wave of increased pressure travels back to the pumps or valve, where reversal of the pressure wave takes place again and a second pressure wave of reduced magnitude travels the length of the pipeline. This is repeated over and over until steady state is reached. #### 2.14.3 Pipeline Friction Pipeline friction helps to decelerate the pressure wave velocity, thus each time the pressure wave travels along the length of the pipeline in either direction, its velocity in the pipeline decreases. The change in velocity of the pressure wave is expressed by the following equation: $\Delta v = Gh/a$, where, h is the difference in head (pressure) at the two ends of the force main plus the friction head, at the average velocity of the pressure wave, during the passage of the wave. #### 2.14.4 Sudden Change in Flow Conditions A change in flow conditions within a force main is considered to be "sudden" if the change is completed within the time period required for the surge pressure wave to travel the length of the force main, be reflected, and return to the point of origin. This time period for the surge pressure wave to make a round trip is referred to as the "critical period" of the force main and is expressed by the equation t = 2L/a, where L = the distance between the point of flow change, i.e. pumps or valve, and the point of wave reflection. The maximum surge pressure occurs at the point of velocity change, regardless of the rate of change in velocity. #### 2.14.5 Gradual Change in Flow Conditions A change in flow conditions with a force main is considered to
be "gradual" if the change is completed in a period of time which is greater than the "critical period". This scenario may be considered as a series of flow velocity changes, each produced in a time equal to or less than 2L/a. For "n" increments of change in velocity within the initial period of 2L/a: - 1. The greatest incremental pressure change will result from the largest incremental change in velocity. - The total pressure change during the first interval of 2L/a will be the sum of the "n" incremental changes in pressure which occurred during the initial interval. The maximum surge pressure change may, however, occur after the first 2L/a interval and should be determined from an accurate analysis of the direct and reflected impulses as performed by a graphical or computer model analysis. #### 2.14.6 Potential Severity of Surge Pressure In assessing the potential severity of a possible surge pressure situation, it is necessary to determine whether the change in flow conditions are to be considered as "sudden" or "gradual". As an example, if the length of force main being considered is 1500 feet, the wave velocity is assumed to be 3500 ft/sec, the "critical period" is determined to be 2L/a = 2 x 1500 feet ÷ 3500 ft/sec = 0.9 seconds. Since it is practically impossible to intentionally produce a significant change in velocity within 1 second or less, in pipeline sizes typically encountered, the "sudden" change case most likely will not occur, and therefore maximum surge pressures are not likely to occur. This is very characteristic of "short" force mains and with the exception of possible slamming of check valves, these force mains are seldom of concern, and would not require any surge relief valves or other devices. On the other hand, as an example, if the length of force main being considered is say 20,000 feet, and the wave velocity is still assumed to be 3500 ft/sec, then the "critical period" is determined to be $2L/a = 2 \times 20,000$ ft \div 3500 ft/sec = 11.4 seconds. Under this scenario, a substantial change in the flow velocity can be achieved within this time period and is likely to be of serious concern. #### 2.14.7 Probable Effects of Surge Pressure The following brief discussion is presented to assist in ascertaining the probable effects of surge pressure by classifying the physical characteristics of the force main. Identification of the initial cause of the change in flow from the steady state must be made. The three most frequently encountered probable causes are: - 1. The opening/closing of a valve. - 2. The starting/stopping of a pump. - 3. The failure of the force main. Typically, the manual or automatic operation of valves cannot cause a "sudden" change in the flow conditions and cause a surge pressure of concern. Pumping systems, however, are more often of a more serious concern and typically have two types of problems associated with them: - 1. The starting/stopping of the pumps under normal operating conditions. - 2. The pump operation under power failure conditions. Under normal operating conditions the change in flow conditions are typically controlled by valves in the pump discharge line, and may be considered as a control valve condition, which would not cause a "sudden" change in the flow condition or cause a surge pressure of concern. in a power failure condition the pumps may initiate and cause a surge pressure. If the probable effect of surge pressure is serious, according to the criteria presented above, a detailed analysis by experts is recommended. Additionally, if a pump discharge valve closes "suddenly", before the forward movement of the water column stops, cavitation of the water column may occur. Cavitation may also occur at high points in the force main during the initial phases of pressure loss in the system. Vapor cavities formed under these conditions are typically closed with violent impact upon reversal of the flow and can result in extremely high surge pressures. The analysis of surge pressures associated with cavitation require a detailed computer analysis. Likewise, a failure of the force main can cause complex surge pressures the analysis of which would best be accomplished by performing a detailed computer analysis by an expert in the field. #### 2.14.8 Classification of Pumping Systems Table 6 is a simple classification of pumping systems into two categories "A" and "B". Surge problems occurring under category "A" situations are typically of minor concern and usually occur with great frequency in actual practice. The severity of the surge problems associated with the category "A" situations may be determined from the check list presented as Table 7. TABLE 6 CLASSIFICATION OF FORCE MAINS IN PUMPING SYSTEMS | 1. | Type of System | Α | В | |----------|--|---|---| | <u></u> | A. Single pipeline of uniform size | Х | | | | B. Single pipeline of more than one size | | Х | | <u> </u> | C. Two or more parallel lines | | х | | | D. Single or parallel system connected to a distribution grid | Ī | Х | | 2. | Profile of System | 1 | | | | A. Relatively flat or gradual ascending slope | X | | | | B. Steep slope (length less than 20 times the pump head) | | Х | | | C. Intermediate high Points | | Х | | | D. Intermediate pumps or tanks | | Х | | 3 | Pump Suction conditions | | | | | A. Suction direct from suction well | Х | | | | B. Suction line in which the critical period (2L/a) is 1 second or less | Х | | | | C. Suction line in which the critical period (2L/a) is greater than 1 second | | Х | If the pumping system to be analyzed contains any items listed under category "B", it is recommended that the system be referred to experts for analysis. If the pumping system to be analyzed contains only items listed under category "A", proceed to Table 7. TABLE 7 CHECK LIST FOR FORCE MAINS OF CATEGORY "A" ITEM ONLY | | | YES | NO | |----|--|-----|----| | 1. | Is "Critical Period" greater than 1.5 seconds? | | | | 2. | Is the maximum flow velocity in the force main greater than 4.0 ft/sec? | | | | 3. | Will any check valve in the force main close in less than the "critical period" (2L/a)? | | | | 4. | Will the pump or motor be damaged if allowed to run backwards, up to full speed? | | | | 5. | Is the factor of safety for the force main less than 3.5 under normal operating conditions? | | | | 6. | Are there any automatic quick closing valves in the force main set to open/close in less than 5 seconds? | | | | 7. | Are there any automatic valves within the pumping system that become inoperative due to loss of pumping system pressure? | | | | 8. | Will the pump(s) be tripped off prior to full closure of the discharge valve? | | | | 9. | Will the pump(s) be started with the discharge valve open? | | | If the answer to <u>any one</u> of the above questions 1 thru 6 is <u>yes</u>, there is reason for concern regarding surge pressures. If <u>two or more</u> of the above questions 1 thru 9 are answered <u>yes</u>, the situation is likely to be serious and the degree of severity will be in proportion to the number of <u>yes</u> answers. #### 2.15 Examples of Surge Pressure in a Force Main The following are examples to illustrate the use of Tables 6 and 7 (Section 2.14.8) as well as the various equations presented previously, which are intended to assist in determining the probable effects of surge pressures. #### 2.15.1 EXAMPLE NO. 1 #### 2.15.1.1 Design Data: - Pumps: Three (3) identical units (1 standby), Rated Flow (each) = 5000 gpm (7.2 mgd). Station Design Capacity = 10,000 gpm (14.4 mgd). Assumed Pump Rundown Time Under Full Head = 1.5 Seconds. Rated Discharge Head = 78 Feet. - 2. Force Main: 26-inch Diameter Steel Pipe, Length = 8000 Feet. - Valves: 24-inch C.I. Plug Valves (suction side). 18-inch C.I. Plug Valves (discharge side). 18-inch Swing Check Valves (discharge side). - 4. Pump Suction: Suction directly from wet well through 24-inch diameter suction pipe (2L/a) = 2 x 15/3500) = < 1 second #### 2.15.1.2 Data for Surge Pressure Analysis: - 1. Steady State Conditions: - a. Flow = 14.4 mgd = 22.3 cfs - b. Velocity = 6.24 ft/sec - c. Total Head = 78 feet - d. Static Head = 5 feet - 2. Critical Period: - a. Wave Velocity, a = 3500 ft/sec (assumed) - b. $2L/a = 2 \times 8000/3500 = 4.5 \text{ sec}$ - Force Main Profile: - a. No Intermediate High Points - b. Relative Slope = L/ΔH = 8000/80 = 100> 20 - 4. Cause of initial surge pressure = power failure. - 5. Sudden or gradual velocity change = sudden, since the assumed pump run down time of 1.5 seconds is less than the critical period of 4.5 seconds. - 6. Maximum Surge Pressure Anticipated: $$h_w = av \div g = 3500 \text{ ft/sec} \times 6.24 \text{ ft/sec} \div 32.2 \text{ft/sec}^2$$ = 21,840 ft²/sec² ÷ 32.2 ft/sec² = 678.3 feet (294 psi) 2.15.1.3 Classification of Force Main: Using Table 6, all applicable items fall under the "A" category, therefore, proceed to Table 7. 2.15.1.4 Force Main Check List Items: Items receiving "yes" answers: - No. 1. Critical period greater than 1.5 seconds. - No. 2. Flow velocity greater than 4.0 ft/seconds. Items receiving "questionable" answers: - No. 3. Closure of check valve less than the critical period (4.5 seconds) - No. 4. Will pump and/or motor be damaged by reverse rotation. This example indicates that there is a potentially serious surge pressure condition that could occur due to the possible sudden closure of the check valve(s). Additionally, it indicates that there may be a concern regarding the potential damage that could be caused by reverse rotation of the pump and/or motor along with a possible need to review this condition with the manufacturer. - 2.15.2 EXAMPLE NO. 2 - 2.15.2.1 Design Data: Same as for Example No. 1 - 2.15.2.2 Data For Surge Pressure Analysis: - Steady State Conditions:
a. Flow $$Q_1 = 14.4 \text{ mgd} = 22.3 \text{ cfs}$$ $Q_2 = 7.2 \text{ mgd} = 11.1 \text{ cfs}$ - b. Velocity $v_1 = 6.24 \text{ ft/sec}$ $v_2 = 3.12 \text{ ft/sec}$ - c. Total Head = 78 feet - d. Static Head = 5 feet - 2. Critical Period: Same as for Example No. 1 - 3. Force Main Profile: Same as for Example No. 1 - 4. Cause of initial surge pressure = Loss of power to one of the two pumps running. - 5. Sudden or gradual velocity change = sudden, since the assumed pump rundown time of 1.5 seconds is less than the critical period of 4.5 seconds. - Maximum Surge Pressure Anticipated: #### 2.15.2.3 Classification of Force Main: Using Table 6, all applicable items fall under the "A" category, therefore, proceed to Table 7. #### 2.15.2.4 Force Main Check List Items: Items receiving "yes" answers: - No. 1. Critical period greater than 1.5 seconds. - No. 2. Flow velocity greater than 4.0 ft/sec initially. Items receiving "questionable" answers: - No. 3. Closure of check valve in less than the critical period of 4,5 seconds. - No. 4. Will pump or motor be damaged by reverse rotation. - 2.15.2.5 This example indicates that there is a potentially serious surge pressure condition that could occur due to the possible sudden closure of the check valve(s). Additionally it indicates that the severity of the surge pressure will be less than if both pumps were suddenly shut down. It also indicates that there may be a concern regarding the potential damage that could be caused by reverse rotation of the pump and/or motor along with a possible need to review this condition with the manufacturer. #### 2.15.3 EXAMPLE NO. 3 #### 2.15.3.1 Design Data: Pumps: Two (2) identical units (1 standby) Rated Flow (each) = 3000 gpm (4.3 mgd) Station Design Capacity = 3000 gpm (4.3 mgd) Assumed Pump Rundown Time under full head = 1.5 seconds. Rated Discharge Head = 55 feet 2. Force Main: 26-inch diameter steel pipe Length = 6500 feet 3. Valves: 16-inch C.I. plug valves, manually operated on suction and discharge of pumps. 4. Pump Suction: Takes suction directly from wet well through 16-inch diameter suction pipe $(2L/a) = (2 \times 15/3500) = <1$ second. #### 2.15.3.2 Data For Surge Pressure Analysis: - 1. Steady State Conditions: - a. Flow = 4.3 mgd = 6.65 cfs - b. Velocity = 1.87 ft/sec - c. Total Head = 55 feet - d. Static Head = 5 feet - 2. Critical Period: - a. Wave Velocity, a = 3500 ft/sec (assumed) - b. $2L/a = 2 \times 6500/3500 = 3.7 \text{ sec}$ - 3. Force Main Profile: - a. No intermediate high points. - b. Relative slope = L/ Δ H = 6500/55 = 118>20 - 4. Cause of initial surge pressure = Power failure. - 5. Sudden or gradual velocity change = Sudden, since the assumed pump rundown time of 1.5 seconds is less than the critical period of 3.7 seconds. - Maximum Surge Pressure Anticipated: ``` h_w = av \div g = 3500 \text{ ft/sec} \times 1.87 \text{ ft/sec} \div 32.2 \text{ ft/sec}^2 = 6545 ft²/sec² ÷ 32.2 ft/sec² = 203.3 feet (88 psi) ``` #### 2.15.3.3 Classification of Force Main: Using Table 6, all applicable items fall under the "A" category, therefore proceed to Table 7. #### 2.15.3.4 Force Main Check List Items: Items receiving "yes" answers: No. 1 Critical period greater than 1.5 seconds. Items receiving "questionable" answers: No. 4 Will pump and/or motor be damaged by reverse rotation. 2.15.3.5 This example indicates that there is a potentially minor surge pressure condition that could occur due to the shut down of the pump on a loss of power. It also indicates that there may be a concern regarding the potential damage that could be caused by reverse rotation of the pump and/or motor along with a possible need to review this condition with the manufacturer. #### 2.16 Surge Relief Valves Surge relief valves are typically installed at pump stations to protect the pumps, piping, valves and other equipment from potential damage from surge pressures. Surge relief valves should be sized to release the excess surge flows through the valve either on the basis of system flow or so that the inlet pressure measured at the relief valve will be lower than the lowest pressure rating of the pumping equipment. All manufacturers of surge relief valves have a value size selection chart in their catalog for the purpose of selecting the proper sized valve for the force main system, or portion thereof, to be protected. Figure 5 is an example of a valve size selection chart which is reproduced from the GA Industries, Inc. Catalog No. GA-2000. Surge relief valves are to be located downstream of the pump control valve/check valve or on the main discharge header as close to the pump(s) as practical. Surge relief valves typically discharge back into the wet well. Consideration should be given to providing two or more smaller sized valves having a total combined relieving capacity equal to or greater than a single larger sized valve, especially when there is more than one pump discharging into a common header. A surge relief valve may be utilized on each pump discharge line or several valves may be provided on the common discharge header. When several valves are provided it is advisable that each valve's pressure setting be slightly higher than the adjacent valve allowing the valves to open in sequence instead of all at once. It should be noted that all surge relief valves are field adjustable and their relief pressure setting range is determined when the valves are ordered from the manufacturer. Figure 5 Example of Surge Relief Valve Size Selection Chart #### 2.17 Pipeline Design - 2.17.1 Refer to the latest edition of the City of Houston "Design Guidelines for Lift Station and Force Mains" for additional design criteria. - 2.17.2 Pipeline velocity higher than 6 fps should be checked for possible high and low negative surge pressures during a power failure when all running pumps stop suddenly. - 2.17.3 The length of the pipeline should be kept as short as practical to decrease the detention time and odor generation. - 2.17.4 The vertical alignment of pipeline should avoid a steep slope of pipe near the pump station followed by a long stretch of flat grade. This type of alignment is often the cause of column separation. See Figure 6. A rising pipe followed by a falling one will require an air vent to be installed at the summit. Figure 6 Example of Column Separation Determination 2.17.5 Pipeline passing through peaks and valleys require vents at the high point and drains in the low point. Such pipe profiles should be checked very carefully for air entrapment and air release. Either one could cause high surge pressure due to improper selection of air valve sizing. Also, the static head of a pipeline having ups and downs with entrained air pockets should be carefully checked. Under certain conditions the static head of each water column should be added cumulatively, even through they appeared to be canceling each other. See Figure 7. Figure 7 Effect of Air Entrapment on Pump TDH #### 2.18 Check Valves - 2.18.1 For pump system head of 30 psi or less, the maximum velocity through a non-spring loaded or counter-weighted check valve should not exceed 3 fps. It may be increased to 5 fps for check valves which are spring loaded or counter weighted to prevent valve slamming. For pump system head higher than 30 psi cushioned swing check valves should be used. However, cushioned swing check valves do not eliminate pressure surges when the valve closes suddenly. It only reduces the slamming noise. - 2.18.2 One valve manufacturer recommends that the counter-weight arm should be installed in a horizontal position when fully closed if the valve will open to an upward angle of 45 degree at the maximum operating capacity. The arm may be installed at 30 downward angle if the valve will open to an upward angle of 60 degrees or more at the maximum operating capacity. This is important in order to ensure that valve will be fully closed before the pressure wave returns to the valve location. - 2.18.3 When pumps are stopped suddenly, as during a power failure, the pressure inside the force main will rise when the return pressure wave reaches the closed check valve. The amount of pressure rise may be any where between 40 to 70 percent above the normal pump operating head. Power operated check valves are sometimes used to control the pressure rise at the pump to a minimum. - 2.18.4 The following standards should be used unless they are verified to the contrary by computer surge analysis. - a) The force main pipe should be specified to be capable of sustaining a negative pressure of -8 to -10 psig. The maximum surge allowance of the pipe should be about 70% of the maximum operating pressure when swing check valves are used. - b) In a high-pressure pumping system where the amount of pressure rise is severely limited, power-operated check valves should be considered. By proper selection of the valve closing time, pump back-spinning can be prevented. - c) A system where zero pressure rise is desired can be achieved by allowing sewage to return to the wet well while the check valve is closing slowly. Under such condition the maximum reverse speed of the pump must be estimated and clearly stated in the project specifications. #### 2.19 Shut-off Valves Plug valves or resilient-seat, solid-wedge gate valves should be used for shut-off service in a sewage force main application when the liquid being pumped contains gritty material. Outside Yoke and Screw (OY&S) rising stem gate valves are preferred by some operators to Non-Rising Stem (NRS) gate valves because their gate positions can be readily identified. Because of the conventional type packing which is used in OY&S gate stem seals they may require occasional adjustment. #### 2.20 Blow-off Valves Low points in a sewage force main should be provided with a blow-off valve especially when the sewage contains grit and other inorganic solids and the pipe slopes of the falling and rising legs are steep. The blow-off liquid may be
drained to a nearby gravity sewer or be hauled away in a tank truck. If pumps can be operated once each day to provide the required flushing velocity un-interruptedly for such a duration that the volume inside the falling and rising legs can be replaced with the fresh sewage the blow-off valve may be omitted. #### 2.21 Air and Vacuum Valves Sewage pump station design utilizing submersible pumps will usually have the check valves installed closer to the ground surface for easy maintenance. Such arrangement frequently requires an air and vacuum valve to be installed on the pump side of the check valve to prevent vacuum pressure being developed inside the vertical riser pipe when the pump stops; and to allow the air to be completely vented to the atmosphere with little or none being passed into the force main through the check valve. When the difference in elevation between the low wet well water level and the top of the discharge pipe, at the check valve, is less than 25 feet, air and vacuum valves may be omitted. On longer riser pipes air and vacuum valves must be installed and the following procedures may be followed in computing the valve size required: - Step 1. Determine the vertical distance in feet between the check valve and the minimum water level. If it is less than 10 feet, no vacuum relief valve is required. - Step 2. Determine the maximum pump operating capacity in cfs. Convert pump capacity in gpm to cfs by dividing by 448. This should be equal to the required valve venting capacity. - Step 3. Select the required valve size from an Air Vacuum Valve Discharge Capacity Chart similar to the one shown in Figure No. 8. Valve manufactures normally recommended 2.0 psig as the design outflow pressure, this could be reduced to 1.0 psig when frictional head loss through shut-off valve and vent pipe is included. Example: Determine the size of an air and vacuum valve required to vent the air volume inside 30 feet of 16-inch riser pipe between the check valve and the minimum pumping level in the wet well, assume the maximum pump discharge capacity is 5.0 mgd (7.75 cfs). Vertical Distance of riser pipe = 30.0 feet Actual pump capacity, or valve vent capacity = 7.75 cfs Valve venting capacity from Manufacturer's Data: 1" Valve = 2.0 cfs 2" Valve = 5.0 cfs 3" Valve = 10.0 cfs 4" Valve = 13.0 cfs 6" Valve = 32.0 cfs Valve size Selected = 3.0 inches. 2.21.3 Since the vertical distance is greater than 10 feet, a vacuum and air release combination valve should be specified. Sewage type air vacuum valves should be used in sewage pump station applications. These valves are furnished with flushing-out hose connections. Figure 8 Air Vacuum Valve Capacity Chart # SECTION 3 STRUCTURAL DESIGN CRITERIA # SECTION 3 STRUCTURAL DESIGN CRITERIA #### 3.1 Specification Codes - 3.1.1 The following codes, specifications, recommendations, allowable stresses, and loadings will be used in designing the project structures: - Uniform Building Code UBC (1991) with City of Houston Amendments. - 2. Building Code Requirements for Reinforced Concrete (ACI 318-92). - 3. Details and Detailing of Concrete Reinforcement (ACI 315-92). - 4. Manual of Engineering and Placing Drawings for Reinforced Concrete Structures (ACI 315R-94). - 5. Environmental Engineering Concrete Structures (ACI 350R-89). - 6. AISC Specification for Structural Steel Buildings Allowable Stress Design and Plastic Design (1989) and Manual of Steel Construction, Allowable Stress Design. - 7. AASHTO Standard Specifications for Highway Bridges. - 8. Geotechnical Report. #### 3.2 Loads - 3.2.1 Pump Station and Valve Vault Structures Below Grade - Hydrostatic liquid pressure due to maximum internal operating liquid level with no balancing external lateral pressure 63 pcf 2. Poorly draining sand or sand and gravel, lateral pressure 80 pcf(min) or Per Soil Rpt. 3. Compacted silty clay, lateral pressure 100 pcf(min) or Per Soil Rpt. Lateral load due to surcharge loading of construction crane and H-20 truck shall be added to load (b) and (c). Per Soil Rpt. - All Structures shall be designed to resist buoyancy due to ground water at finished grade or the 100 year flood elevation, whichever is higher. See Section 3.3 for buoyancy calculation requirements. - 6. Roof Slab at or below Grade: DL: Weight of Concrete Slab SDL: Backfill or other Superimposed Dead Loads LL: 300 psf or equipment weight plus 50 psf. 7. Fiber Reinforced plastic cover, platform, and walkways at or below grade. LL: 150 psf #### 3.2.2 Buildings and Miscellaneous Structures Loadings for design of buildings to be obtained from appropriate codes. However, certain minimum loads shall be used as follows: Minimum Uniform Live Loads: Grating 150 psf Stairs and catwalks 150 psf Electrical control rooms 250 psf (Estimate support area and equipment weights and assume loads applied anywhere in area in question) Wind: As per UBC for basic wind speed = 90 mph. Exposure C and Importance factor = 1.15 #### 3.3 Buoyancy The below grade wet wells and valve vaults will be subject to buoyant forces as defined in Section 3.2. The calculation shall use the safety factors and follow the method presented in Figure 9. Since a bentonite slurry may be used in the caisson excavation, the safety factor listed for soil friction reflects its presence. Verify that the required factors given by the geotechnical consultant are consistent with this. The structure weight shall only include the walls and slabs. The weight of fillets, baffle walls, pads, and equipment shall not be included as these could be changed in the future or may not be in place during construction. #### 3.4 Design Stresses #### 3.4.1 Concrete and Reinforcing Steel Liquid Containing Structures: Use Strength Design Method of ACI 318-89, Building Code Requirements for Reinforced Concrete, with durability factor per ACI 350 R-89 Environmental Engineering Concrete Structures, and base crack control on a maximum Z of 115. Concrete compressive strength at 28 days fc = 4,000 psi Reinforcing steel (A 615, Gr. 60) fy = 60,000 psi 2. Building and Non-Liquid Containing Structures: Use Strength Design Method of ACI 318-89 Concrete compressive strength at 28 days fc = 4,000 psi Reinforcing steel (A 615, Gr. 60) fy = 60,000 psi #### 3.4.2 Structural Steel Follow AISC Specification for the Design, Fabrication and Erection of Structural Steel for Building (1989), and use following materials: - 1. ASTM A36 unless otherwise specified - 2. ASTM A325 H.S. bolts - ASTM A307 or A36 bar stock for anchor bolts. #### 3.5 Design Considerations #### 3.5.1 Wet Well Load Cases: - 1. Wet well empty with full lateral exterior load. - Wet well filled to the maximum level possible during a power outage, while disregarding exterior soil pressures. #### 3.5.2 Differential Soil Movement: Due to the significant difference in foundation elevations between the wet well and the valve slab or vault, there is a potential for differential soil movement resulting from settlement, expansive clays, or movement needed to develop soil friction. This potential movement is most severe where wet wells are constructed by the caisson method. The open cut construction method allows for placing cement stabilized sand so as to minimize the movement potential. The Guideline Drawings include expansion or rotation joints. #### 3.5.3 Wet Well Wall Design - The circular wet well shall be designed using a recognized shell theory or by using the Portland Cement Association publication, "Circular Concrete Tanks without Prestressing." - The Guideline Drawing indicates dowels connecting the wall to the base slab for the caisson construction method. Structural connections between base slab and caisson shall be designed to transfer full base reactions from slab to wall. Full base reactions are: - For downward load: weight of components supported on the slab plus the weight of liquid at maximum elevation in the wet well; - b. For upward load: (1) soil bearing reactions; and (2) hydrostatic uplift pressures, together with any potential soil uplift pressure caused by instability, for empty well. Hydrostatic pressure shall be as defined in Paragraph 3.2.1 Soil uplift pressures shall be based on geotechnical analysis. #### 3. Wall Base Cutting Shoe Details - a. The minimum depth of the cutting shoe base below the final excavation bottom shall be shown on the drawings. The required depth to maintain bottom stability shall be based on geotechnical analyses. In no case shall the required minimum depth of shoe penetration below the final excavation bottom be less than 1.5 feet. - Under no circumstances shall the excavation depth shown on the drawings require excavation below the top of the inside bevel of the cutting shoe. #### 3.5.4 Additional Stresses Due to Caisson Construction If the contractor (at his option) selects to utilize caisson construction method, the following additional stresses shall be added to stresses from sections 3.5.1, 3.5.2 and 3.5.3. - Tilting or out of plumbness may occur during sinking of caisson. Tilting shall be not more than 1-inch per 5 foot depth of caisson. Tilting causes bending stresses in the caisson wall. These additional stresses shall be included in the design of caisson wall. - Sudden sinking causes axial tension in caisson wall. When frictional and adhesional forces on upper length of caisson are equal to total weight of caisson, caisson sinking stops. This stoppage causes hang-up forces resulting in axial tension in caisson wall. Minimum hang-up force equal to one half the weight of caisson shall be used in design of longitudinal reinforcement in caisson wall. #### 3.5.5 Control Building Design Unless the control building dimensions are changed from what is shown on the guide drawings, only the foundation needs to be designed. Follow the recommendations of the geotechnical report for the type and depth of the foundation. #### 3.5.6 Valve Vault Catwalks Access over pipes which extend to greater than 30 inches above
the floor shall be by catwalk as detailed on the guideline drawings. The fiberglass specifications call for the catwalk to be designed by the manufacturer. The drawings need to provide all the dimensions and approximate support leg locations. #### 3.6 Detailing - 3.6.1 Detailing of the reinforcement shall follow the requirements of ACI 315, ACI 315R, ACI 318, and ACI 350R. - 3.6.2 All construction joints in water containing and below grade elements shall be provided with a 6 inch PVC waterstop. All expansion joints shall be provided with a 9 inch PVC centerbulb waterstop. Where construction requirement or joint geometry will not allow a 6 inch PVC waterstop, a surface applied waterstop which forms a positive seal by adhesion or expanding in the presence of water may be used. Notes and/or details shall be added to insure that all joints and joint intersections are continuously sealed. $$p_{w} = (H + L_{f}) \gamma_{w}$$ $$F_{u} = A_{B} p_{w}$$ $$W_{c} = V_{c} \gamma_{c}$$ $$\frac{W_{c}}{S_{f_{a}}} \ge F_{u}$$ #### (b) UTILIZING SOIL WEIGHT ABOVE BASE EXTENSION PLUS STRUCTURAL WEIGHT $$W_{s} = [(H -L_{B}) (\gamma'_{S} + \gamma_{w})] [\pi t (D_{B} - t)]$$ $$\frac{W_{c}}{S_{f_{a}}} + \frac{W_{s}}{S_{f_{b}}} \ge F_{u}$$ Where: A_{R} = area of base, sq ft undrained cohesion of soil layer "m", psf * diameter of base, ft hydrostatic uplift force, lbs average frictional resistance of layer "m", psf height of buried structure, ft depth to bottom of soil layer "m", ft coefficient of lateral pressure * thickness of base extension, ft distance to finished grade to 100 yr flood elev, ft thickness of soil layer "m", ft unit hydrostatic uplift, psf = 1.10, factor of safety against uplift, concrete weight 1.50, factor of safety against uplift, soil weight = 3.00, factor of safety against uplift, soil friction width of base extension, ft volume of concrete (walls and slabs only), cu ft weight of concrete structure, lbs weight of backfill above base extension, lbs cohesion reduction factor * unit weight of damp backfill, pcf (use 125 pcf for compacted backfill) * γ_t' = submerged (effective) unit weight of backfill, pcf (use 62.5 pcf for compacted backfill) * submerged (effective) unit weight of soil layer "m", pcf * unit weight of concrete = 145 pcf unit weight of water = 62.4 pcf overburden pressure at bottom of layer "m", psf friction angle between soil layer "m" and concrete wall, degrees * internal angle of friction of soil layer "m", degrees * * obtain value from the site specific geotechnical report $$\begin{split} f_{s_m} & \text{(cohesive soils)} = \alpha \ c_m \\ f_{s_m} & \text{(cohesionless soils)} = \frac{(\sigma_{v_{m-1}} + \sigma_{v_m})}{2} \ \text{K tan } \delta_m \\ \frac{W_c}{S_{f_a}} + \frac{\pi D_B \sum f_{s_m} L_m}{S_{f_c}} \geq F_u \\ \text{where:} & h_o = 0 \\ \sigma_{v_o} = 0 \\ & \text{For } h_m > \text{H, use } L_m = \text{H - } h_{m-1} \end{split}$$ $$\sigma_{v_m} = \sigma_{v_{m-1}} + \gamma'_m L_m$$ Notes: - cohesive soils include clay, sandy/silty clay. - cohesionless soils include silty sand, sandy/clayey silt. - neglect fe in upper 5 feet. #### UPLIFT PRESSURE AND RESISTANCE # SECTION 4 MECHANICAL DESIGN CRITERIA ## SECTION 4 MECHANICAL DESIGN CRITERIA #### 4.1 General - 4.1. This design guide gives criteria and describes procedures for designing of cooling, ventilation and plumbing systems for lift stations. The lift stations include a wet well, and may include either a control building or an outdoor control panel. The valves and discharge piping may be above grade or in a vault below ground depending on specific site requirements. - 4.1.2 The wet well is a strictly unattended well with submersible pumps. The submersible pumps can be removed from the wet well through the use of a rail guide removal system without the necessity of entering the pit. The Wet Well must not be entered under any circumstances without first providing proper ventilation to remove any explosive or toxic fumes that may be present in it. - 4.1.3 The valve vault houses isolation and check valves, and could house other devices which may require periodic checking. The vault can be entered through a hatch and a vertical ladder. Before entering the vault, it must be properly ventilated. - 4.1.4 The control building houses motor control centers, panels, transformers and other equipment required for the lift station operation. - 4.1.5 Because of solar heat transmission into the control building and heat gains from electrical equipment, the building must be provided with proper cooling to prevent overheating and possible malfunction of electrical devices. - 4.1.6 The design should be in compliance with applicable criteria by TNRCC codes and NFPA 820, Standard for Fire Protection in Watewater Treatment and Collection Facilities. #### 4.2 Wet Well Ventilation - 4.2.1 Since the wet well is unattended and must not be entered without special provisions, a permanent type ventilation system is not required. Mechanical ventilation must be provided when the wet well is to be entered for any reason. A portable type engine or electrically driven air supply fan should be used. A quantity of outdoor air, equal to at lease thirty air changes per hour of the wet well volume must be blown into the well through a flexible pipe. The point of discharge of the air into the well must be where people are present. The air supply fan must be in operation for a minimum of two minutes before anyone enters the well. Entrance hatches must be kept open to allow foul air to escape from the well while outdoor air is being blown in. - 4.2.2 The ventilation for a wet well should be designed as a passive gravity ventilation system (breather type), where the air volume in the well is either increased or outdoors through the vent pipe, as sewage flows into or is pumped out of the wet well. The passive ventilation pipe should be sized to allow an inflow of make-up air volume to the wet well, at a rate equal to the maximum liquid pumping rate out of the wet well, with an air velocity through the vent pipe not to exceed 600 fpm. In no case shall the vent pipe be less than six inches in size. #### 4.3 Valve Vault Ventilation - 4.3.1 The valve vault is normally unattended. However, on occasion it must be entered to service valves and other devices. A ladder is provided for that purpose. - 4.3.2 Since odors are not normally generated in the vault, continuous ventilation and odor control are not required. There is a possibility, however, that harmful or explosive fumes may enter the vault through cracks in walls or leaking valves. For this reason, the vault must be properly ventilated before anyone enters it. The ventilation should be accomplished with a permanently installed in line air fan. Outdoor air should enter the vault through open vault access hatches. The fan should run for at least two minutes, supplying outdoor air to the vault before anyone enters it. - 4.3.3 The fan should be installed vertically and supported from the vault wall. The outdoor pipe should be either FRP (fiberglass reinforced plastic) or PVC (poly vinyl chloride) pipe, and should conform to either of the two details (No. 9 or 9A) supplied in the Design Guidelines Drawing package. Selection of gooseneck on mushroom type venting shall be based on direction from City of Houston Wastewater Operations. - 4.3.4 The fan should be sized for 30 air changes per hour of the vault volume. If the vault volume is 1200 cubic feet then the fan capacity should be 1200 cf per air change x 30 air changes per hour x one hour/60 minutes = 600 cfm. - 4.3.5 Construction of the fan should be FRP material, with a spark proof aluminum or FRP wheel and an explosion proof, direct or belt drive motor. - 4.3.6 Air piping should be sized for a maximum pressure drop in inches of water column per hundred equivalent feet of pipe or duct as follows: 0 to 600 cfm -0.08 inches wc; 600 to 2000 cfm 0.10 inches wc; 2000 to 4500 cfm 0.125 inches wc. The minimum size of the pipe should be 6 inches in diameter. - 4.3.7 An enamel sign should be installed at the vault entrance hatch in an easily visible place and indicate the following warning: "START FAN, KEEP ENTRANCE HATCHES OPEN, BE SURE FAN IS RUNNING, WAIT 2 MINUTES BEFORE ENTERING." #### 4.4 Plumbing - 4.4.1 Water from open grating pump access hatches, cracks in walls and floor may leak into the valve vault. Liquids from leaky valves or from valves under repair may also be discharged onto the vault floor. A floor drain to drain the liquids to the adjacent wet well should be provided. The floor drain should have a "P" trap and a floating ball-type backwater valve to prevent fumes and liquids from entering the vault from the wet well. The valve vault floor should be sloped toward the floor drain. - 4.4.2 Where solid pump access hatches are used, a corrosion resistant sump pump system should be provided to pump the liquid to the adjacent wet well. - 4.4.3 A water supply is needed during repairs, for washing down equipment, valve vault and grade slabs. Water should be provided through a 3/4 inch diameter supply line and non-freeze type hose bibb located near the wet well. - 4.4.4 All water should be metered and supplied through a reduced pressure type backflow preventer for protection of the city water mains from possible contamination due to cross-connections. - 4.4.5 The above grade water supply system pipe, fitting, valves, and water meter should be insulated and protected against freezing. The complete backflow preventer assembly should be provided with a vandal proof enclosure and equipped with access provisions for servicing and checking of the equipment. #### 4.5 Control Building Cooling - 4.5.1 Control Buildings house motor control centers, electrical panels transformers, and other equipment for operating pumps located in Wet Wells. - 4.5.2 The temperature in the buildings will be affected by solar heat gain, by thermal conduction and convection, and by heat radiated
from electrical equipment. If the excess heat is not removed either with ventilation air or by mechanical cooling, the temperature in the building will rise to a point where electrical devices will malfunction and disrupt operation of the pumping station. - Where clean outdoor air at suitable temperatures is available, forced ventilation is the least expensive and simplest way of removing heat from a building. Removing heat by forced ventilation should be considered when it is possible to maintain indoor temperatures of not to exceed 105 degrees fahrenheit at all times. In Houston, however, outdoor air may at times be very saline, and when drawn through a building will cause corrosion and adversely affect delicate electrical instruments and devices. Therefore, controlling building temperature in such atmospheres is best accomplished by providing mechanical cooling units, where minimum or no outdoor air is circulated through the building, thus avoiding possible corrosion of equipment. - The mechanical cooling units are also susceptible to corrosion from the saline atmosphere. The useful life of such units will be much shorter in a saline atmosphere than in normal atmospheric conditions. However, the operating life of mechanical units can be extended by specifying that the units will be provided with a protective coating application. Heat transfer capacity of protectively coated coils is not significantly affected (normally a reduction in capacity of less than 10 percent). The coating should cover all parts that come in contact with outdoor air, which includes the casing, heat transfer coils, refrigerant tubing and electrical devices. Mechanical cooling units should be wall mounted package type, heat type, units. - 4.5.5 When sizing the cooling unit, all instantaneous sources of heat gain must be accounted for. The worst scenario would be with all pumps running and the outdoor temperature 100°F, or higher, and staying within this range for a number of consecutive days. Mechanical cooling units shall be sized to maintain a building indoor temperature of 85 degrees fahrenheit or less at a 40 percent specific humidity at maximum heat gain. - 4.5.6 Solar and transmitted heat gain calculations must be in accordance with the ASHRAE Handbook of Fundamentals. The outdoor temperature listed in the ASHRAE Guide must be adjusted for outdoor air temperature encountered in Houston, if such maximum temperature continues within that range for more than 4 hours. Maximum temperatures for the particular area must be obtained locally. - 4.5.7 Unit Selection should be based on a terminal wall mounted heat pump type mechanical cooling unit having a minimum 13,000 BTUH sensible cooling capacity at 105°F outdoor air temperature at 77°F wet bulb temperature and an air temperature of 85°F dry bulb and 66°F wet bulb entering the cooling coil. - 4.5.8 The above selected unit is sized for a 4-pump system. The same unit can also be used for stations with fewer pumps and smaller heat gains. - 4.5.9 The air conditioning unit should be controlled through a room type thermostat set to maintain the room air temperature at approximately 80°F. The unit fan shall run continuously when the unit control switch is in the "on" position. ### **SECTION 5** # ELECTRIC POWER AND INSTRUMENTATION CONTROLS DESIGN CRITERIA #### SECTION 5 #### **ELECTRICAL POWER AND INSTRUMENTATION CONTROLS DESIGN CRITERIA** #### 5.1 Basic Data - 5.1.1 Prior to assembling a drawing package, the following site specific data must be established and calculations performed. Refer to the current Design Guideline Manual for guidance on fencing requirements, site layout, location of electrical junction boxes, etc. - Number and size of pumps (gpm & HP/KW) - Station configuration (Preferred, Secured Site or Exposed Site) - Location of electrical junction box (above grade or in valve vault) - Instrumentation system level (Level I, II or III) - Fencing requirements - Electrical power reliability study for alternate power determination - Full load calculation - Motor starting analysis and short circuit calculations #### 5.2 Electrical Drawing Set - 5.2.1 Each design package shall contain the following minimum electrical drawings: - Electrical Symbols Legend, Lighting Fixture Schedule & Abbreviations - Site plan, including grounding and outdoor lighting - Conduit Layout Plan - Conduit Layout Sections - Electrical Design Details - Control Building Plan (for sites with control buildings) - Control Cabinet Layout - Process and Instrumentation Diagram - Control System Wiring Diagrams - MCC & PLC Power Schematic Wiring - Single Line Diagram - Cable and Conduit Schedule - Device Rating Schedule - MCC Elevation (for sites with a MCC) - 5.2.2 The electrical drawing set is arranged with Guideline plans and details for Level I lift stations with two pumps, and for Level II or Level III lift stations with up to 6 pumps (4 wet weather and 2 dry weather pumps). The contracted design engineer is responsible for adjusting the details in the drawings, the number of pump starters, relays, devices, et cetera, based on the specific configuration. Delete only the devices associated with pumps not provided. DO NOT delete items associated with provided pumps without prior approval of the City of Houston. Some components have been included to provide for ease of future expansion. #### 5.3 Electrical Symbols, Legend, Lighting Fixture Schedule & Abbreviations Sheet - 5.3.1 This sheet defines the symbols and abbreviations utilized in the preparation of the contract drawing package, and schedules the lighting fixtures used. Use this sheet as a guideline for revisions made to the Guideline Drawings - 5.3.2 Include this sheet in each design package. <u>DO NOT</u> delete symbols or abbreviations from this sheet. Add any special items used in the preparation of the final package. Delete any lighting fixtures not used. #### 5.4 Site Plan - 5.4.1 In addition to the Design Guideline Drawings required, a site specific electrical site plan must be created. After establishment of the basic civil site, the following electrical information must be established and/or added: - Locate the electrical building or electrical panel in accordance with the COH Design Guidelines. - Locate the electrical service point. - Orientate the lift station to coincide with the civil plans. - Route conduits from electrical service and telephone service locations to the control building/cabinet. - Locate yard light and route conduit from control building/cabinet. - Establish site ground field and provide ground connections of service entrance, control building/cabinet, handrails, above grade electrical junction boxes, yard light, piping and all metal parts. - 5.4.2 Note: An example of an electrical site plans is included in the Design Guideline Drawing package as referenced material for the Design Engineering. **DO NOT** include this drawing in the project drawing package without site specific modifications. #### 5.5 Electrical Plans and Sections - 5.5.1 From the Standard Design Guideline Drawings, select the following drawings for the appropriate lift station configuration and size. Review all drawings and details and revise to accommodate specific site and facility requirements. At a minimum, the following review and revisions are required: - Verify structural dimensions of the valve vault and the wet well and revise the electrical plans accordingly - Verify the number of active air cell conduits based on the applicable instrument system. Provide adequate air cell and electrical installed spare conduit for anticipated future use. - Verify drawing number cross references for section callouts - Verify all sections referenced are included in the document set - Orient station plans and conduit layout sheets to correspond with the site plan. - Adjust north arrow on each plan sheet - Add any special or extra features required at this specific site. <u>DO NOT use</u> conduits designated as "future space" for undesignated additions. - Determine the need for power factor correction capacitors and locate on the drawings. Connect capacitors to the motor starter leads prior to the motor overload relay. Exercise caution to specify capacitors with overcurrent fuses and indicating lights then locate capacitors within the 25 wire feet distance specified by the N.E.C. Article 240-21. #### 5.6 Typical Details 5.6.1 The typical electrical details are to be revised and combined as necessary to meet specific site conditions. In general, the details apply to the following situations: Detail 3 (Z0E02) Beginning Junction Box To be used at all lift stations with Level II or III Instrumentation. Control conductors for pumps less than 50 HP may be in a common cable with power conductors. Adjust the number of conductors and conduits accordingly. Detail 3A (Z0E02) Beginning Junction Box To be used at all lift stations with Level I Single Phase Instrumentation. Control conductors for pumps less than 50 HP may be in a common cable with power conductors. Adjust the number of conductors and conduits accordingly. Detail 3B (Z0E02) Beginning Junction Box To be used at all lift stations with Level I Three Phase Instrumentation. Control conductors for pumps less than 50 HP may be in a common cable with power conductors. Adjust the number of conductors and conduits accordingly. Detail 4 (Z0E02) - Intermediate Junction Box To be used at all three and five pump lift stations with Level II or III Instrumentation. Control conductors for pumps less than 50 HP may be in a common cable with power conductors. Adjust the number of conductors and conduits accordingly. Detail 5 (Z0E02) - End Junction Box To be used at all lift stations with Level II or III Instrumentation. Control conductors for pumps less than 50 HP may be in a common cable with power conductors. Adjust the number of conductors and conduits accordingly. Detail 5A (Z0E02) - End Junction Box To be used at all lift stations
with Level I Single Phase Instrumentation. Control conductors for pumps less than 50 HP may be in a common cable with power conductors. Adjust the number of conductors and conduits accordingly. Detail 5B (Z0E02) - End Junction Box To be used at all lift stations with Level I Three Phase Instrumentation. Control conductors for pumps less than 50 HP may be in a common cable with power conductors. Adjust the number of conductors and conduits accordingly. Detail 6 (Z0E03) - Air cell conduit details to assist in installation. Detail 7 (Z0E03) - Typical Ductbank Section To be used at all lift stations. Detail 8 (Z0E03) - Typical Ductbank Entrance at Structural Wall To be used in conjunction with Detail 10 at all lift stations with valve vaults. Detail 9 (Z0E03) - Typical Electrical Handhole Construction Special detail for use where an electrical handhole is necessary. Possible applications are as an intermediate pull location for long underground ductbanks. Detail 10 (Z0E03) - Typical Conduit Seals To be used at all lift stations with a electrical building, and in conjunction with Detail 8 at all lift stations with a valve vault. المراجعة (المراجعة To be used at all lift stations. Delete the flashing alarm light at sites with a control building. Verify foundation design for specific site soil conditions. Detail 13 (Z0E04) - Electric & Telephone Service Installation Detail To be used at all lift stations with aerial service. Provide telephone service for Level II & III Instrumentation. Provide spare telephone conduit for Level I stations. Verify and coordinate all specifics with HL&P and SWB. Detail 14 (Z0E04) - Typical Ground Well Installation To be used at all lift stations. Detail 15 (Z0E04) - Typical MCC & Control Panel Instrumentation & Conduit Entry To be used at all lift stations with interior MCC's or Control Panels. Detail 16 (Z0E04) - Typical Panel Installation To be used at all lift stations with a distribution panel in the control building. #### 5.7 Control Building Plan Include this sheet in each lift station package with a control building. Revise building dimensions, number of MCC sections, telephone service and conduit plan based on the number and size of pumps and instrumentation system level. (Control Building dimensions are provided on the Device Rating Schedules). Orient the building plans and add a north arrow to coordinate with the site plan. Revise lightning protection details to coordinate with actual building construction and materials. Relocate alarm light to provide visibility from access road. #### 5.8 Control Cabinet Layout Based on the instrumentation system level and the intended location of the control cabinet (indoor or outdoor), select the appropriate control cabinet installation and equipment layout sheet(s). Revise the dimensions, elevation, device layout and air piping schematics based on the actual number of pumps. The Level II outdoor power and control cabinets are shown back-to-back in a single four door enclosure. For installations where this approach is not feasible, the designer must separate the two sections (shown as the front control panel and the back power panel), adjust enclosure depth, and provide interconnecting wiring required for the number of pumps used. #### 5.9 Process and Instrumentation Diagrams Based on the instrumentation system level, select the appropriate process and instrumentation diagrams. Revise by deleting unnecessary devices based on number of pumps. Do not renumber or adjust input/output designations. Label all unused PLC input/outputs as spare. #### 5.10 Control System Wiring Diagrams Based on the instrumentation system level, select the appropriate control system schematic diagrams. Revise by deleting unnecessary devices based on number of pumps. Do not renumber or adjust line numbers or input/output designations. Label all unused PLC input/output as spare. #### 5.11 MCC & Power Wiring Diagram Select the appropriate diagram and revise to reflect actual number of pumps, valve vault exhaust fan, service voltage and other site specific conditions. #### 5.12 Single Line Diagrams Based on the location of the motor controls and the instrumentation level, select the appropriate diagram. Revise the selected single line diagram to reflect actual number of pumps, service voltage, use of a valve vault, use of a lighting transformer, etc. Coordinate service entrance and metering requirements with HL&P. #### 5.13 Conduit Schedule Prepare a site specific conduit schedule by revising the following columns from the appropriate guideline sheet: - Conduit Number - Description - Service (Voltage and Amps / HP) - Routing (From. To. Via) - Conduit Description and Size - Cable of Wire Description and Conductor Size Revise the table to provide conduit and wire sizes and descriptions in accordance with NEC requirements for actual site conditions. Conduits not necessary at a specific site should be deleted from the schedule. Show conduits to be installed for future use as "Installed Spare" or "Future Space" on the Schedule. Notes to the Design Engineer are provided to assist the designer in selecting conduits for certain special installations. Revise the conduit schedule selected based on the appropriate notes. Delete the notes from the final document. #### 5.14 Device Ratings Schedule Prepare a site specific device ratings schedule by including the following columns from the appropriate sheets: - Item - Circuit - Description - Rating (Select the column that corresponds to the number and size of pumps at the site.) All pump sizes are specified in standard motor horsepowers. For submersible pumps that do not precisely coordinate with these standard horsepowers, select the table for the next larger size. Verify that device ratings selected are in accordance with current NEC requirements. #### 5.15 MCC Elevation For sites that include a MCC, include the MCC elevation specified on the device rating schedule for the appropriate number of pumps, and horsepower ratings required. # SECTION 6 NON-CITY OF HOUSTON OWNED LIFT STATIONS ## SECTION 6 NON-CITY OF HOUSTON OWNED LIFT STATIONS - 6.1 GENERAL - 6.1.1 This section is applicable to design of lift stations within the City of Houston jurisdiction but not owned by the City - 6.2 DESIGN REQUIREMENTS - 6.2.1 Ownership - 6.2.1.1 Site shall be conveyed in fee to a utility district, the City of Houston, or other acceptable public entity. - 6.2.1.2 The site may be part of a larger site that includes a public wastewater treatment facility or other facility. - 6.2.2 Site Layout Geometry - 6.2.2.1 Site shall have a minimum size of 50 feet by 50 feet. - 6.2.2.2 Site access shall be provided by a 15-foot wide public right-of-way. - 6.2.2.3 Wet well or dry well structures shall be a minimum of 12 feet from outside walls of structure to site boundary fencing. - 6.2.2.4 Provide an all-weather road of not less than 12 feet in width to the site. - 6.2.3 Fencing - 6.2.3.1 Enclose all sites with an intruder-resistant fence with a (1) minimum height of 6 feet and topped with three strands of barbed wire, or (2) a fence with a minimum height of 8 feet without barbed wire. Fences, including barbed wire if used, shall be located completely inside the site boundary. - 6.2.3.2 Fencing may be of any of the following construction: - 1. Chain link. - 2. Chain link with wood slats or plastic slats. - 3. Cedar picket, 6-inch wide minimum picket with pickets bolted or screwed to steel frames connected to galvanized steel posts. - 4. Precast concrete or other masonry. - 5. Any other as approved by City Engineer. - 6.2.4 Grading and Drainage - 6.2.4.1 Use drainage swales, sidewalls and driveways, culverts, storm sewers, or a combination thereof for internal site drainage. - 6.2.4.2 Site drainage may sheet flow to a public right-of-way. - 6.2.4.3 Storm sewer systems, if provided shall be sized in accordance with applicable design guidelines. - 6.3 WET WELL / VALVE VAULT DESIGN - 6.3.1 Location - 6.3.1.1 Flood Protection. The top of the wet well shall be located above the 100-year floodplain, and the design engineer shall take into consideration wave action, which may exceed this elevation. Entry to the site must be accessible during a 25-year flood. - 6.3.1.2 Wet Wells. All gravity sanitary sewers discharging to the wet well shall be located where the invert elevation is at or above the liquid level of the highest pump's "ON" setting to achieve the firm pumping capacity. Gate valves and check valves shall not be located in the wet well, but may be located in a valve vault or on a concrete slab. Piping shall be spaced to maintain the pump manufacturer's minimum clearances between pumps. - 6.3.2 Specifications - 6.3.2.1 Size the diameter of the wet well, hatches, and hatch spacing to accommodate the selected pumping equipment. Consideration should be given to the dimensions of the ultimate pump in a multi-phased lift station to ensure adequate clearances. Provide a minimum of 6 inches of clearance from the inside wet well wall to all flanges to enable removal of all bolts. The following wet well diameters shall be used for cast-in-place wet wells: 6', 8', 11', 14', 16'-6". Wet wells larger than 16'-6" may be sized in 1-foot increments. Precast concrete wet wells may be used in any diameter provided calculations demonstrate that wet well thickness and material weight will resist imposed uplift pressure. Refer to paragraph 6.3.2.10. Provide hatch safety nets with aluminum sliding rails. - 6.3.2.2 The wet well volume shall be based on the minimum cycle time of the largest pump planned for the lift station plus additional depth to prevent motor overheating and vortexing. The cycle time shall not be less than those listed below: | Pump Horsepower | Minimum Cycle Times (minutes) | |-----------------|-------------------------------| | Less than 50 | 6 | | 50-100 | 10 | | Over 100 | 15 | The minimum effective volume of the wet well shall be based on the following
formula: $$V = \frac{Q_p \ t}{(4) \ 7.48} \\ \begin{array}{c} \text{V = Volume (ft}^3) \\ \text{Qp = Pump Capacity (GPM)} \\ \text{t = Cycle Time (Minutes)} \\ \text{7.48 = conversion factor in} \\ \text{gallons/cubic} \\ \text{foot} \end{array}$$ The pump capacity "Qp" is the largest pump in alternation. This capacity is to be the actual flow rate of one pump pumping alone against a system head generated with new pipe friction factors (C=140 for PVC and for DIP). - 6.3.2.3 The "OFF" elevation of the wet weather pumps shall be deep enough to prevent vortexing and motor overheating. The design engineer shall verify with <u>all pump</u> manufacturers on the List of Acceptable Manufacturers that each pump is capable of operating continuously at the "OFF" elevation shown on the plans. - 6.3.2.4 Wet Well Slopes. The wet well floors shall have a minimum of 10 percent slope to the pump intakes and have a smooth finish. There shall be no wet well projections, which will allow deposition of solids under normal operating conditions. - 6.3.2.5 Venting. The wet well shall have a vent sized such that the maximum velocity of air through the vent is 600 fpm at the firm pumping capacity. Vents shall have a stainless steel insect screen that is easily replaceable and will prevent the entrance of rainwater. Vent pipes shall be corrosion-resistant. - 6.3.2.6 Dry Well/Valve Vault Access. Access shall be provided to underground dry wells and valve vaults. Stairways shall have corrosion-resistant, non-slip steps and conform to OSHA regulations with respect to rise and run. Where ladders are utilized in lieu of stairways, ladders shall conform to OSHA requirements. - 6.3.2.7 Dry Well/Valve Vault Drains. Floor drains from dry wells and valve vaults to wet wells shall be designed to prevent gas and raw sewer water from entering the valve vault. Such designs shall include "P" traps and floating ball type backwater valves. - 6.3.2.8 Dry Well/Valve Vault Clearances. All walls shall be a minimum of 18 inches from the outermost edge of all flanges to enable removal of all bolts. Pipes shall have a minimum spacing greater than that required by the pump manufacturer for minimum pump spacing. Swing check valves shall be positioned such that the shafts may be removed without removing the valve body. - 6.3.2.9 Structural Considerations. Follow the latest version of ACI 350 with the exception that the minimum concrete cover over steel reinforcing shall be 4 inches where in contact with raw sanitary sewer. - 6.3.2.10 Wet wells are to be designed to resist the effects of buoyancy assuming full saturation of the surrounding soils to the finished grade or the 100-year floodplain, which ever is greater. Surface friction shall not be included in the design unless a friction factor is provided in a geotechnical report signed and sealed by a licensed professional engineer. A safety factor of 1.1 shall be used for buoyancy resistance. - 1. Wet well walls shall be designed to withstand lateral earth pressures and static water levels at finished grade as outlined in ACI 350. At a minimum, 3,500 psi concrete shall be used. Class III or IV RCP may be used in lieu of cast in place concrete if structural calculations are provided showing that sufficient strength exists to resist construction and final loadings. - 2. Top slabs shall be designed for a uniform loading of 100 pounds per square foot and a point load equal to the weight of the largest pump planned for the lift station at any location. Hatches shall be constructed entirely of aluminum or stainless steel and designed for a minimum of 150-pound-per-square-foot load. The underside of the hatch shall have the following stenciled in red paint: "Warning! Confined Space Entry." - 3. Where individual hatches are incorporated into the top slab, the separation distance from inside face to inside face shall be a minimum of 12 inches. - 4. Where riser pipes pass through the top slab, offsets or two 45-degree bends shall be used to provide clearance between the outside diameter of the pipe and the inside face of the hatches. The amount of clearance will be determined by the diameter of the slab reinforcing and the maximum aggregate diameter. #### 6.4 VALVES AND PIPING #### 6.4.1 General - 6.4.1.1 Use of vault-type or above-ground valves and piping is permitted. Valves shall be mounted in a concrete vault, or on an above-ground concrete foundation. Isolation and check valves shall not be located in the wet well. - 6.4.1.2 Each pump shall have a separate suction pipe. Suction piping intakes in the wet well shall be fitted with flare 90-degree bends. Eccentric reducers shall be used in suction piping as required. Suction pipe velocity shall be between 3 and 7 feet per second (fps). - 6.4.1.3 Force mains shall be a minimum of 4 inches in diameter, unless used in conjunction with grinder pumps. Pump stations with two pumps shall have force main velocities of a minimum of 3 fps with one pump in operation. For pump stations with three or more pumps, the force main velocity shall not be less than 2 fps with the smallest pump only in operation. Force main velocities shall not exceed 6 fps without the engineer performing an analysis for possible high and low negative surge pressures in the event of sudden pump failure. - 6.4.1.4 Isolation valves shall be provided on the discharge side of pumps for submersible pumps and suction and discharge side of pumps for dry pit/wet pit lift stations, positioned such that the pump and/or check valve can be isolated for removal. Plug valves, ball valves, gate valves, and pinch valves may be used. Check valves shall be swing type with an external lever and shall be installed in a horizontal position. Use of butterfly valves, tilting disc check valves, or other valves utilizing a tilting disc in the pipe flow is not permitted. - 6.4.1.5 Surge relief valves, air release, and/or combination air and vacuum valves shall be provided, as required. - 6.4.1.6 Lift station piping shall have flanged or flexible connections to allow for removal of pumps and valves without interruption of the lift station operation. #### 6.5 PUMPS AND MOTORS - 6.5.1 Design requirements for wastewater lift station pumps and motors. - 6.5.1.1 Stations with capacities of 100 gallons per minute or greater may be designed with wet well mounted close-coupled type pumps, self-priming pumps, or be wet well/dry well type facilities. Lift stations shall be designed to discharge the peak design flow at the system head required and to operate efficiently during any initial, interim, or ultimate design phase. - 6.5.1.2 Firm pumping capacity shall be provided, and is defined as total station, maximum pumping capacity, with the largest pumping unit out of service. - 6.5.1.3 Pump selection shall be based on the analysis of the system head and pump capacity curves for the determination of pumping capacities. System losses shall be calculated in accordance with the Hydraulic Institute standards. The selected C coefficient value for use in the calculation of friction head losses per the Hazen-Williams Formula shall be based on the selected pipe material for new and aged (20-year) conditions. Typical values used for design purposes are presented below. | | C Coefficient Value | | |----------------------|---------------------|----------| | Pipe Type | New | 20 Years | | Ductile Iron (lined) | 140 | 120 | | Plastic - PVC | 140 | 130 | - 6.5.1.4 Force main velocities shall be included on the system curve. - 6.5.1.5 Pumps shall be of a non-clog design, capable of passing a 3-inch diameter or greater incompressible sphere, and shall have suction and discharge openings a minimum of 4 inches in diameter. - 6.5.1.6 Pump seals shall be silicon carbide or tungsten carbide. - 6.5.2 Pump Operation - 6.5.2.1 Electric motors shall be 120-volt single-phase, 240-volt or 480-volt 3-phase. - 6.5.2.2 Optimum efficiencies should be considered in the selection of the pumps and motors provided. - 6.5.2.3 Leak detection sensors shall be provided in the motor housing of submersible pumps. - 6.5.2.4 Motor service factor shall be a minimum of 1.15. - 6.5.2.5 Electric motors shall be sized so as to operate at maximum design load without use of the service factor. - 6.5.2.6 Thermal protection shall be provided in the motor housing. - 6.5.2.7 Electric motors (excluding submersible units) shall be equipped with space heaters. - 6.5.3 Pump Installation - 6.5.3.1 Pumps shall be securely supported, per manufacturer recommendations, so as to prevent movement or vibration during operation. - 6.5.3.2 Rail-type pump support systems shall be provided for submersible pump installations. That allows pump removal and installation without requiring dewatering of or entry into the wet well. Rails, lifting chains, and hardware shall be constructed of Series 300 stainless steel. - 6.6 CORROSION PROTECTION AND ODOR CONTROL - 6.6.1 Design considerations include corrosion control and protection of concrete and metallic surfaces located within the wet well/valve vault or within the immediate vicinity from the effect of hydrogen sulfide (H₂S) gas in the wastewater. The effects of H₂S gas should be minimized by reducing the production or release of H₂S gas from the wastewater discharging to or being contained in the lift station. Suggested design and control methods include: - 6.6.1.1 Protecting the exposed concrete and steel surfaces with acid-resistant materials. - 6.6.1.2 The use of Series 300 stainless steel for equipment, piping, devices, etc., exposed to corrosive gases. - 6.6.1.3 Providing odor control equipment for wet well atmospheric vents. - 6.6.1.4 Design wet wells that lack interior corners, projections, or areas that can result in the accumulation of solids. Design interior surfaces with smooth finishes that facilitate cleaning. - 6.6.1.5 Provide washdown water at site when possible. - 6.6.2 Surfaces to be protected: - 6.6.2.1 Interior of wet well: The Engineer shall
specify a plastic liner meeting the requirements of City of Houston Standard Specification Section 02427, entitled "Plastic Liner for Large-Diameter Concrete Sewers and Structures." - 6.6.2.2 Piping located within wet well: Exterior-piping surfaces shall be coated with an appropriate painting system selected by the Engineer. - 6.6.2.3 Guide rails, lifting chains, hardware, and miscellaneous metal shapes located within wet well shall be constructed/manufactured of Series 300 stainless steel. ## 6.6.3 Odor Control 6.6.3.1 Engineer shall evaluate the need for odor control and take appropriate steps in the design of the lift station to accommodate the installation of odor control equipment, if required. Engineer shall be the final authority concerning the need for odor control equipment. ## 6.7 ELECTRICAL CONTROL AND INSTRUMENTATION ## 6.7.1 General 6.7.1.1 The following electrical control and instrumentation design is recommended for lift stations located within the City of Houston ETJ, where stations are not property of or operated by the City. ## 6.7.2 Electric Power Requirements - 6.7.2.1 The following electrical power sources are the most economical and practical for serving lift stations: - For stations where total pump motor sizes do not exceed 30 hp, and where any individual pump motor size does not exceed 20 hp, 120/240-volt, threephase service is recommended. - 2. For stations where individual pump motor sizes do not exceed 5 hp and motor ratings are available as single-phase, and where three-phase service is not available, 120/240 volt, single-phase service may be used. - 3. For stations requiring pump motors that are available in only three-phase ratings and where three phase electrical service is not available (or not economically feasible), 120/240-volt, single-phase service with a three-phase inverter unit is acceptable as a last resort but is not recommended. Inverters are available for up to 100-hp motor sizes. - For stations where total pump motor sizes exceed 30 hp and where individual motor sizes exceed 20 hp, 480/277-volt, three-phase service is recommended. - 5. Where owner has an existing portable generator with only 480/277-volt, three-phase output, it may be more advantageous to utilize 480-volt, three-phase power for the smaller stations. - 6. Optional emergency power connections may require a manual transfer switch and generator connector. ## 6.7.3 Electrical Controls 6.7.3.1 Pump Controller: Solid state, programmable pump controller with pump alternator, submersible level transducer, back-up floats, alarm contacts, and power supply. ## 6.7.3.2 Controls and Indicators - 1. Pump HOA Selector Switch (for each pump) - 2. Alarm Reset Switch - 3. Seal-Fail and Over-Temp Reset Switch (for each pump protection module supplied by pump manufacturer) - 4. Phase-Fail Light - 5. Pump Run Light (for each pump) - 6. Control Power Light On - 7. Pump Seal-Fail Light (for each pump protection module supplied by pump manufacturer) - 8. Pump Over-Temp Light (for each pump protection module supplied by pump manufacturer) - 9. High Level Alarm Indicator - 10. Alarm Rotating Beacon Light - 11. Pump Run Elapse Time Meter (for each pump) ## 6.7.3.3 Motor Protection Devices - 1. Motor Circuit Protectors (MCP's) or circuit breakers - 2. Motor Overload Current Trip Devices or C.T.'s with Relays (for each motor) - 3. Motor Over-Temp and Seal Fail Relays (for each motor furnished by pump motor manufacturers) - 4. Phase Fail Relay ## 6.7.3.4 Surge Protection Device 1. Lightning and Surge Protection Device installed on Main Power Bus, singleor three-phase, as applicable ## 6.7.3.5 Level Controls - 1. Primary: Solid state transducer with cable and weight, rated for wastewater application - 2. Back-up: PVC ball type float with mercury switch high and low level ## 6.7.4 Operation - 6.7.4.1 As level rises, the submersible level transducer detects the pressure change and sends a 4-20 MA signal that is proportional to wet well level to the pump controller. - 1. Each pump is brought on as level rises, and when wet well level falls back to a preset level, all pumps stop. - 2. Pump alternator in the controller alternates lead/lag pump selection at end of each pumping cycle. - If pumps fail to draw down wet well, high-level alarm signal is initiated at the pump controller and controller automatically switches to standby floats for activation of pump controls. - 4. In the event of fail signal from transducer, controller automatically switches to floats. ## 6.7.4.2 Alarm Signals 1. Alarms activate local indicator lights and send signals to autodialer. ## 6.7.5 Enclosures ## 6.7.5.1 Pump Cable Terminal Boxes 1. NEMA 4X stainless steel boxes mounted near pump access hatch for termination of pump power and control cables and for termination of transducer and float cables. 2. All hub-type conduit entries. ## 6.7.5.2 Control Panel Enclosure - 1. NEMA 4X stainless steel enclosure on factory stainless steel stands with inside swing door, back plate, quick release latches, and hooking clasp. - 2. All hub-type conduit entries. ## 6.8 DRAWING REQUIREMENTS - 6.8.1 Pump station construction plans shall include drawings that provide the following information: - 1. Site layout - 2. Plan and profile of pump station and associated site piping - 3. Profile view of pump operational and control levels and settings - 4. Hydraulic system curve - 5. Electrical wiring and control system schematics - 6. Structural details ## APPENDIX A GENERAL DRAWING/FILE INFORMATION ## City of Houston Design Guideline Drawings For Submersible Lift Stations ## & Sheet Numbering Designation Codes Filename ## Filename Designation Wet Weather Pumps Weather Pumps 100 gpm per Pump 100-300 gpm per Pump 1250-500 gpm per Pump 1250-2000 gpm per Pump 12000-5300 gpm per Pump 1500-2500 gpm per Pump 4 Wet Dry & 3 2 Dry & Station Station Station Station Station Station Station Station Description Codes 2-Pump 2-Pump 2-Pump 3-Pump 4-Pump 6-Pump 3-Pump 5-Pump ABOOMFOT Open Open Open Open Open Open Open Open Open **」スコ≥ΣΟσΩΚΝ⊢** ## Discipline Codes Architectural <u>S</u>. Electrical & Instrumentation \triangleleft O \square O \square O General Structural ## Configuration Codes Dwg Non—Specific to Configuration Alternate High Profile Configuration o Preferred Configuration 20 evel III Instrumentation Il Instrumentation I Instrumentation evel evel Open Open Open Open \supset > Open Common Drawings Low Frofile Configuration Alternate | New
Cht Mo | Drawing Hite | |---------------|--| | 20G01 | Tilo Dane | | 3 | | | Z0A01 | Control Building, Architectural | | A1001 | Plan View @ Grade & Sections, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration | | A1002 | | | A2001 | Plan View @ Grade & Sections, 2-Pumps @ 100 qpm per Pump, Preferred Configuration | | A2C02 | Elevation Sections, 2-Pumps @ 100 gpm per Pump, Preferred Configuration | | | | | A3002 | Plan View @ Grade & Sections, 2—Pumps @ 100 gpm per Pump, Atternate Low Profile Configuration
Elevation Sections, 2—Pumps @ 100 gpm per Pump, Atternate Low Profile Configuration | | | | | B1C01 | Plan View @ Grade & Sections, 2-Pumps @ 100 - 300 gpm per Pump, Alternate High Profile Configuration | | B1C02 | Elevation Section, 2-Pumps @ 100 – 300 gpm per Pump, Alternate High Profile Configuration | | 7000 | | | B2C01 | Plan View @ Grade & Sections, Z-Pumps @ 100 - 300 gpm per Pump, Preferred Configuration | | BZCUZ | | | B3C01 | Plan View @ Grade & Sections, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration | | B3C0Z | Elevation Section, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration | | | | | | Pian View @ Grade & Base Sect, Z-Fumps @ 250 — 500 gpm per Fump, Attemate Figure Configuration Flevation Section 2-Pumps @ 250 - 500 gpm per Pump, Attemate High Profile Configuration | | 70010 | | | C2C01 | Base Sect, 2-P | | C2C02 | Elevation Section, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration | | C3C04 | Plan View @ Grade & Base Sect. 2—Pumps @ 250 500 com per Pump. Alternate Low Profile Configuration | | C3C02 | Elevation Section, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration | | | | | D1001 | Plan View @ Grade & Base Sect, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration | | D1C02 | Elevation Section, 3-Pumps @ 250 2000 gpm per Pump, Alternate High Profile Configuration | | D2C01 | Plan View @ Grade, 3Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration | | | | | New | | |-----------|--| | Sht No. | | | | Plan View @ Grade, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | | levation Section, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | | lase Section, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | G2C04 S | Station Operation Tables, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | | | | G3C01 P | | | _ | | | 8 80 SE9 | Base Section, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | G3C04 S | Station Operation Tables, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | | | | H1C01 P | | | H1C02 E | Elevation Section, 4 Wet & 2 Dry Weather Pumps, Atternate High Profile Configuration | | H1C03 B | Base Section, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration | | | | | H2C01 P | Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration | | H2C02 E | H2C02 Elevation Section, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration | | H2C03 B | | | H2C04 S | Station Operation Tables, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration | | _ | | | H3C01 P | Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3C02 E
| Elevation Section, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3C03 B | Base Section, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3C04 S | Station Operation Tables, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | - | | | | Air Cell Assembly & Details | | | Typical Details, Civil | | | Typical Details, Civil | | | Discharge Piping Support Details | | | | | | urge Relief Valve Details | | | Typical Details, Civil | | | Typical Site Details | | Z0C09 E | Example - Site Plan | | | | | A1501 S | Structural, 2-Pumps @ 100 gpm per Pump, Attemate High Profile Configuration | | | | | | Description Tales | |---------------|---| | Sht No. | Drawing the | | E2S01 | Structural, 3-Pumps @ 2000 – 5300 gpm per Pump, Preferred Configuration | | E2S02 | 2000 - | | E2S03 | @ 2000 - 5300 gpm per Pump, | | E2S04 | 2000 - 5300 gpm per Pump, | | | | | E3S01 | Structural, 3-Pumps | | E3S02 | Structural, 3-Pumps | | E3803 | Structural, 3-Pumps | | E3S04 | Structural, 3-Pumps | | | | | F1S01 | Structural, 4-Pumps @ 500 - | | F1S02 | Structural, 4-Pumps @ 500 - | | F1S03 | Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration | | | | | F2S01 | @ 200 = | | F2S02 | Structural, 4—Pumps @ 500 — 2500 gpm per Pump, Preferred Configuration | | F2S03 | @ 200 - | | F2S04 | Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration | | | | | F3S01 | Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration | | F3S02 | | | F3S03 | Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration | | F3S04 | @ 500 - | | | | | G1501 | Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration | | $\overline{}$ | 3 Wet & | | G1S03 | Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration | | | | | G2S01 | Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | G2S02 | Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | G2S03 | 2 | | G2S04 | Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | | | | 63801 | Structural, 3 Wet & | | G3S02 | Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | Sht No. | Drawing Title | |---------|--| | G3S03 | Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | G3S04 | Structural, 3 Wet & 2 | | | | | H1S01 | Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration | | H1S02 | Structural, 4 Wet & 2 | | H1S03 | Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration | | | | | H2S01 | 4 Wet & 2 | | H2S02 | Structural, 4 Wet & 2 | | H2S03 | Structural, 4 Wet & 2 | | H2S04 | Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration | | | | | H3S01 | Structural, 4 Wet & 2 | | H3S02 | Structural, 4 Wet & 2 | | H3S03 | Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3S04 | Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | | | | Z0S01 | Structural - Typical Details | | Z0S02 | Structural – General Notes | | | | | | | | A1E01 | Conduit Layout, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration | | A2E01 | Conduit Layout, 2-Pumps @ 100 gpm per Pump, Preferred Configuration | | A3E01 | Conduit Layout, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration | | ı | | | B1E01 | Conduit Layout, 2-Pumps @ 100 - 300 gpm per Pump, Allemate High Profile Configuration | | B2E01 | Conduit Layout, 2-Pumps @ 100 - 300 gpm per Pump, Preferred Configuration | | B3E01 | Conduit Layout, 2-Pumps @ 100 300 gpm per Pump, Alternate Low Profile Configuration | | | | | C1E01 | Conduit Layout, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration | | | | | CZE01 | Conduit Layout, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration | | 100 | | | | Conduit Layout w/JB | | CSEOZ | Conduit Layout W/JB Inside valve vaut, Z-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration | | Sht No. | Drawing Title | |----------------|--| | C3E03 | Conduit Layout Sections, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Site Configuration | | D1E01 | Conduit Layout, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration | | D2E01 | Conduit Layout, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration | | D3E01 | Conduit Layout w/JB Outside Valve Vault, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration Conduit Layout w/JB Inside Valve Vault, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration | | D3E03 | 101 | | E1E01 | Conduit Layout, 3-Pumps @ 2000 5300 gpm per Pump, Altemate High Profile Configuration | | E2E01 | Conduit Layout, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration | | ESEOT | Conduit Layout w/JB | | E3E03 | Conduit Layout W/ob Inside Valve Valve Valve (2000 – 5500 gpm per Pump, Alternate Low Profile Configuration | | F1E01 | Conduit Layout, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration | | F2E01 | Conduit Layout, 4-Pumps @ 500 2500 gpm per Pump, Preferred Configuration | | F3E01 | Conduit Layout w/JB Outside Valve Vault, 4—Pumps @ 500 — 2500 gpm per Pump, Alternate Low Profile Configuration | | F3E02
F3E03 | Conduit Layout w/JB Inside Valve Vault, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration Conduit Layout Sections, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration | | 70270 | 11 | | GTEUT | Conduit Layout, 3 Wet & 2 Dry Weatner Pumps, Aitemate High Profile Configuration | | G2E01 | Conduit Layout, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration | | G3E01 | Conduit Layout w/JB Outside Valve Vault, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | G3E02 | Conduit Layout w/JB Inside Valve Vault, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | G3E03 | Conduit Layout Elevations, 3 Wet & 2 Dry Weather Pullips, Alternate Low Profile Configuration Conduit Layout Sections, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | | Conduit Layout Sections, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | # COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS. | New | Drawing Title | |---------|---| | Sht No. | | | | | | H1E01 | Conduit Layout, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration | | | | | H2E01 | Conduit Layout, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration | | | | | H3E01 | Conduit Layout w/JB Outside Valve Vault, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3E0Z | Conduit Layout w/JB Inside Valve Vault, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3E03 | Conduit Layout Elevations, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3E04 | Conduit Layout Sections, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | H3E05 | Conduit Layout Sections, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration | | | | | W0E01 | Level I Instrumentation, Outdoor Control Cabinet Installation & Air Piping Schematic | | W0E02 | Level I Instrumentation, Outdoor Control Panel Equipment Layout & Schedule | | | | | W0E10 | Level I Instrumentation, Single Phase, Control Cabinet Equipment Layout | | W0E11 | W0E11 Level Instrumentation, Single Phase, Control Cabinet Equipment Layout | | W0E12 | Level I Instrumentation, Single Phase, Single Line, & Power Wiring Diagrams | | W0E13 | Level I Instrumentation, Single Phase, Control Wiring Diagram | | | Level I Instrumentation, Single Phase, Control Wiring Diagram | | | Level I Instrumentation, Single Phase, Alternate Control Wiring Diagram | | | | | WOEZO | Level I Instrumentation, Three Phase, Control Cabinet Equipment Layout | | W0E21 | Level I Instrumentation, Three Phase, Control Cabinet Equipment Layout | | W0E22 | Three Phase, | | W0E23 | Three Phase, | | W0E24 | Level I Instrumentation, Three Phase, Control Wiring Diagram | | W0E25 | Level I Instrumentation, Three Phase, Alternate Control Wiring Diagram | | | | | WOE30 | Level I Instrumentation, Control System Process & Instrumentation Diagram | | _ | | | | Level II Instrumentation, Outdoor Control Cabinet Installation & Air Piping Schematic | | | Level It Instrumentation, Outdoor Control Cabinet Equipment Layout & Schedule | | _ | Level II Instrumentation, Outdoor Control Cabinet Equipment Layout | | X0E04 | Level II Instrumentation, Outdoor Control Cabinet Equipment Layout | | XOE05 | Level II Instrumentation, Outdoor Control Cabinet Equipment Layout | | | | # COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS | New
Sht No. | Drawing Title | |----------------|--| | XOEOG | Level II Instrumentation, Outdoor Panel, Power Wining Diagram | | X0E10 | Level II Instrumentation, Outdoor Power Panel, Single Line Diagram | | X0E21 | Level II Instrumentation, Indoor Control Cabinet Layout & Air Piping Schematic | | | Level II Instrumentation, Indoor Control Cabinet Equipment Layout | | | Level II Instrumentation, Indoor Control Cabinet Equipment Layout | | | Not Used | | XOEZS | Level II instrumentation, indoor Panel, MCC Power Schematic & Wiring Diagram | | XOE28 | Level II Instrumentation, Indoor Panel, Single Line Diagram | | XOF40 | Level II Instrumentation Outdoor
Panel. Control System Process & Instrumentation Diagram | | _ | | | | | | XOESO | Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram | | | Outdoor Control Panel, | | X0E52 | Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram | | X0E53 | | | X0E54 | | | XOESS | | | _ | Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram | | X0E57 | Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram | | X0E58 | Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram | | XOE60 | Level II Instrumentation, Indoor Panel, Control System Process & Instrumentation Diagram | | : - 1 | | | | | | X0E70 | - 1 | | X0E71 | Level It Instrumentation, Indoor Control Panel, Control Wiring Diagram | | X0E72 | Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram | | X0E73 | Control Panel, | | X0E74 | | | X0E75 | | | X0E76 | Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram | | New
Sht No. | Drawing Title | |----------------|---| | X0E77 | Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram | | X0E78 | Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram | | YOE20 | Level III Instrumentation, Air Piping Schematic | | Y0E21 | Level III Instrumentation, Control Cabinet Layout & Equipment Schedule | | Y0E22 | Level III Instrumentation, Control Cabinet Equipment Layout | | YOE23 | Level III Instrumentation, Control Cabinet Equipment Layout | | Y0E24 | Not Used | | YOE25 | Not Used | | Y0E26 | Level III Instrumentation, MCC Power Schematic, Control Power & Communications Wiring Diagram | | | | | YOE30 | Level III instrumentation, Single Line Diagram | | 1 | | | Y0E40 | Level III Instrumentation, Control System Process & Instrumentation Diagram | | Y0E41 | Level III Instrumentation, Control System Process & Instrumentation Diagram | | | | | YOESO | Level III Instrumentation, Control Wining Diagram | | _Y0E51 | Level III Instrumentation, Control Wiring Diagram | | YOE52 | Level III Instrumentation, Control Wiring Diagram | | YOES3 | Level III instrumentation, Control Wiring Diagram | | Y0E54 | Level III Instrumentation, Control Wiring Diagram | | YOESS | Level III Instrumentation, Control Wiring Diagram | | Y0E56 | Level III Instrumentation, Control Wiring Diagram | | Y0E57 | Level III Instrumentation, Control Wiring Diagram | | YOES8 | Level III Instrumentation, Control Wiring Diagram | | Y0E59 | Level III Instrumentation, Control Wiring Diagram | | YOE60 | Level III Instrumentation, Control Wiring Diagram | | | | | Z0E01 | Electrical Symbols, Legend, Lighting Fixture Symbols & Abbreviations | | ZOE0Z | Typical Junction Box Details | | Z0E03 | Typical Details, Instrumentation/Electrical | | Z0E04 | Typical Details, Instrumentation/Electrical | | Z0E05 | Control Building, Instrumentation/Electrical | | 20E06 | Example - Electrical Site Plan | | | | | Sht No. ZOE 10 ZOE 11 ZOE 13 ZOE 14 ZOE 15 ZOE 15 ZOE 15 ZOE 20 ZOE 40 | New Sht No. 20E 10 Level II or III Instrumentation, MCC Elevations 20E 11 Level II or III Instrumentation, MCC Elevations 20E 12 Level II or III Instrumentation, MCC Elevations 20E 14 Level II or III Instrumentation, MCC Elevations 20E 15 Level II or III Instrumentation, MCC Elevations 20E 16 Level II or III Instrumentation, MCC Elevations 20E 17 Level II or III Instrumentation, MCC Elevations 20E | |---|--| | Z0E43 | ZOE43 Level II or III Instrumentation, Device Ratings Schedules for 480V System | | ZUE 44 | ZUE44 Level II of III instrumentation, Device natings Schedules for 4007 System | ## City of Houston Standard Drawings - CADD File Layering (Level) Breakdown All Text and Text related line entitles (i.e., Dimension & Leader Lines, Cross Section Lines, etc.) are placed on the layers beginning with 'T'; and each entity is placed on the layer corresponding to its color. | <u>Color</u> | <u>Linetype</u> | Description | |--------------|------------------------------------|---| | 1 (red) | Continuous | Text, Dim & Ldr lines which are red | | 2 (yellow) | Continuous | Text, Dim & Ldr lines which are yellow | | 3 (green) | Continuous | Text, Dim & Ldr Ilnes which are green | | 4 (cyan) | Continuous | Text, Dim & Ldr lines which are cyan | | | 1 (red)
2 (yellow)
3 (green) | 1 (red) Continuous
2 (yellow) Continuous
3 (green) Continuous | All Other entities are placed on layers beginning with 'L'; and each entity is placed on the layer corresponding to its color and linetype. | Example: | | | | |-------------------|--------------|-----------------|--| | <u>Laver Name</u> | <u>Color</u> | <u>Linetype</u> | <u>Description</u> | | LCON-1 | 1 (red) | Continuous | Other entities which are Red & Continuous Lines | | LCON-2 | 2 (yellow) | Continuous | Other entities which are Yellow & Continuous Lines | | LCON-3 | 3 (green) | Continuous | Other entities which are Green & Continuous Lines | | LCON-4 | 4 (cyan) | Continuous | Other entities which are Cyan & Continuous Lines | | LCTR-1 | 1 (red) | Center | Other entitles which are Red & Center Lines | | LCTR-2 | 2 (yellow) | Center | Other entitles which are Yellow & Center Lines | | LCTR-3 | 3 (green) | Center | Other entities which are Green & Center Lines | | LCTR-4 | 4 (cyan) | Center | Other entitles which are Cyan & Center Lines | | LDAS-1 | 1 (red) | Dashed | Other entitles which are Red & Dashed Lines | | LDAS-2 | 2 (yellow) | Dashed | Other entities which are Yellow & Dashed Lines | | LDAS-3 | 3 (green) | Dashed | Other entities which are Green & Dashed Unes | | LDAS-4 | 4 (cyan) | Dashed | Other entitles which are Cyan & Dashed Lines | | LHID-1 | 1 (red) | Hidden | Other entitles which are Red & Hidden Lines | | LHID-2 | 2 (yellow) | Hidden | Other entities which are Yellow & Hidden Lines | | LHID-3 | 3 (green) | Hidden | Other entities which are Green & Hidden Lines | | LHID-4 | 4 (cyan) | Hidden | Other entities which are Cyan & Hidden Lines | Other layers or levels may exist; i.e. LMHID-4, LSDAS-1, etc. The last digit represents the color no. & the digits between L and the last digit represent the entity linetype. Unused layers have been purged from the drawing file. ## Suggested Color to Line Weights | <u>Color</u> | Line Weight | |--------------|----------------------| | 1 (red) | 0.35 mm | | 2 (yellow) | 0.50 mm | | 3 (green) | 0.70 mm | | 4 (cyan) | 0.25 mm | | 5 (blue) | 0.25 mm | | 6 (magenta) | 0.35 mm ⁻ | | 7 (white) | 0.50 mm | | 8 (grey) | 0.35 mm | | 9 (rust) | 0.35 mm | | 10 (gold) | 0.25 mm | | 11 (avocado) | 0.25 mm | ## EXPLANATION OF SECTION & DETAIL INDICATORS FOR COH LIFT STATION DESIGN GUIDELINE DRAWINGS ## Section Indicators Indicator on Field of Dwg ('Cut'): Indicator at Section: ## Detail Indicators Indicator on Field of Dwg (Callout): Indicator at Detail: ## Note: Details are not referenced back to the sheet(s) where they are called out on the Field of Dwg. These references would be numerous, and locations redundant in relation to each separate lift station configuration. ## Notes: The sheet number is located in the lower right corner of the drawing Title Block $\underline{\dot{n}}$ the space labeled "DWG NO." The sheet numbers called out on the Design Guideline Drawings are for the purposes of referencing information in the Design Guideline Drawing package. The Design Engineer shall revise all sheet number references to reflect the appropriate sheet number in his project drawing package. ## APPENDIX B STRUCTURAL DESIGN CALCULATIONS ## STRUCTURAL DESIGN CALCULATIONS ## Introduction: The Design Engineer shall consult the City of Houston Design Guidelines Manual, the Engineering Design Manual and the Master Specifications for performing Structural Design Calculations. Attached Structural Design Calculations were in conformity with the Engineering Design Manual for standard submersible lift stations. The Design Engineer shall revise or adjust these calculations to meet project specific requirements. These calculations shall be part of the Structural Design Calculations for a specific project. ## STRUCTURAL DESIGN CALCULATIONS ## INDEX | <u>Title</u>
<u>No.</u> | | <u>Sheet</u>
<u>No.</u> | |----------------------------|---|----------------------------| | 1. | Caisson Construction of Wet Well | • | | 2. | Baffle Wall at Wet Well | 2 | | 3. | Thrust Blocks | 3 | | 4. | Connections | 4 | | 5. | 2 Pumps - 100 - 300 gpm per pump | 7 | | 6. | 2 Pumps - 250 - 500 gpm per pump | 18 | | 7. | 3 Pumps - 250 - 2000 gpm per Pump | 24 | | 8. | 3 Pumps - 2000 - 5300 gpm per Pumps |
31 | | 9. | 4 Pumps - 500 - 2500 gpm per Pumps | 43 | | 10. | 5 Pumps - 3 Wet and 2 Dry Weather per Pumps | 51 | | 11. | 6 Pumps - 4 Wet and 2 Dry Well per Pumps | 67 | | 12. | Control Building | 82 | | | | | | l | |------------------|----------------|----|-------------|-------------| | | OF Ho | u. | stoN | 3904-00 | | PROJECT | | | | JOB NO 0/0/ | | Z-Pun
SUBJECT | // | | | | | | T | | <u></u> | SHEET | | DESIGNED | 1-6-95
DATE | | CHECKED | DATE | | | | | | 10416 | | | | | | Joesianes | IDATE | CHECKED | DATE | |-------------|----------------------
---|---------------|---------------------------------------|--|--------------------|------------| | . 61 | 9/550N | Costs | TRUCT | 1001 | 0.111 | 1:00 110 | 111 L | | 1 | nethoo | 1: P | recasi | 1 Cancin | o to | twell:
Designac | HITZMATE | | ست | | /··· | / / | | <u>= </u> | DESTABLE | 0115+14ct- | | | 2 2277 | 196100 | at mis | potion | mail | Solvet of | | | | | | | | | | | | (L. (. | 2/1104 · 1 | 76,00711 | CONL | 1 cm 73 | H | : | | | | | | | | | | ~ / / . | | a | of the | e follow | 1140 F | cquiren | 2/ | sign Crit | eria | | / | Preco | 254 Cc | pacret | design | 7 201 | culation | | | | 4 cull | 494 | shall b | be book | 240-l - | المرام محوج | 1/ | | | <u> </u> | 11310U | of a | ub/ 500 | Lad b | a an ana | incer | | | 71.2.17 <u>.</u> 2.1 | THEY ! | h the | etale. | 7/ /0 | vac U | | | 11-11- m | latera | P BOY | 1 <u>5 51</u> | sall be | desi | gned to | msist | | | ing. | , <u>, , , , , , , , , , , , , , , , , , </u> | | aue to | 11/1-00 | gned to | 951nK- | | . 3 | Conno | ections | 5 beta | leem 3h | nistes . | 6-7/ | 1= 100 | | · | 10.7.79 | 75 2 19 | 3/7/2 | ar duso | # 1.1 | 45.00 | | | | 1000 | on orus | e to A | an-a-21 | L Land | | 2/ | | | _ 0.4778 2 | 5400/ i | | D. a. V 40 0 1 | | · | | | 4 | A// 7 | sink he | Ligar | ent 501 | <u> </u> | ints shal | ni-1 | | | Water | fight. | . / | PREZA | st-m | wis shall | L be | | 5 | -AII-CO | 545 He/ | atedi | to alter | nate | method | Shall- | | | be at | the_ | Contro | actor's e | xpen | 50. | | | - 1 44 - | | <u> </u> | | | /
 | | | | | | | | | <u></u> | | | | • | · , | • | • | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | · - ··· · | | | | | _ | | | | | | | | | | | ·-· | | | | | | | | | | | | | · | | | - | | | | <u> </u> | |---|-----------------|------------------|------------|------------------------| | | | , Tx, 5+ | | 3921-00
JOB NO 0/0/ | | | Baffle & | wall at i | B/Wel-Well | / of/ | | | NMP
DESIGNED | 11-20-95
DATE | CHECKED | DATE | Binch thick Baffle wall w/ Port holes in bottom: Assume. 2-61x 10 to 16 wide opings. Differential water depth To port holes get blocked. M= 0.063x43 0.7 1/4 Mu= 1.5 1/4 V= 0.063x42 0.5 1/4 Vu= 0.85 1/4 L= 8" wall d= 4" F=0.016 Hasume 50% wall remain K= 1.5 x2 = 188 W1 port holes. P= 0.0036 Az=0. Mulf #4012 Vard in mid thickness of 8 Wall. ## CONNECTIONS ## Table 6.20.8 Shear strength of welded headed studs I—Design shear strength limited by concrete: Use smaller of the values from Eqs. 6.5.8a and 6.5.9 $$\phi V_c = (\phi 628 d_b^2 \lambda \sqrt{f_c}) \pi$$ $\phi V_{c}' = \phi 12.5 d_{e}^{-1.5} \lambda \sqrt{f_{c}'}$ $C_{w} = \left(1 + \frac{b}{3.5d_{n}}\right) \le n_{s}$ Table A gives values for n = 1, $\phi = 0.85$ $$\phi V_c = \phi V_c' C_w C_l C_c$$ where: $$C_c = \left[0.4 + 0.7 \left(\frac{d_c}{d_e}\right)\right] \le 1.0$$ Table B gives values for $\phi = 0.85$ where: $n_s =$ number of studs in back row; see figure for other notation II-Design shear strength limited by steel: $$\phi V_s = (\phi 35,344 d_h^2) n$$ Table C gives value for $$n = 1$$, $\phi = 1.0$ | | | | | | | | _ | / | _ | - | / | |----------------------|-------|-------|-------|----------|-------------------------|--------|------|---------------------------------------|-------------|--------------|--------------| | | | | - | Table A- | −φV _e , kip: | s | | | | | _ | | f _c , psl | 40 | 00 | 50 | 000 | 60 | 000 | ĺ | 7000 | | 800 | 00 | | d _b , ln. | 1.0 | 0.85 | 1.0 | 0.85 | 1.0 | 0.85 | 1.0 | 0.85 | 1.0 | 0 | 0.85 | | 1/4 | 2.15 | 1.83 | 2.40 | 2.04 | 2.63 | 2.24 | 2.85 | 2.42 | 3.0 | 4 | 2.58 | | У. | 4.74 | 4.03 | 5.30 | 4.51 | 5.81 | 4.94 | 6.28 | 5.33 | 6.7 | 71 | 5.70 | | ½ | 8.43 | 7.16 | 9.45 | 8.03 | 10.32 | 8.78 | 11.1 | 5 9.48 | 11.0 | 82 | 10.13 | | У. | 13.19 | 11.21 | 14.72 | 11.79 | 16.15 | 13.72 | 17.4 | 4 14.83 | 18.0 | 65 | 15.85 | | γ, | 19.00 | 16.14 | 21.23 | 18.04 | 23.26 | 19.77 | 25.1 | 2 21.35 | 26. | 85 | 22.82 | | % | 25.85 | 21,97 | 28.90 | 24.56 | 31.66 | 26.91 | 34.1 | 9 26.09 | 36. | 55 | 31.07 | | | | | | Table B- | -φV _c , kip: | 5
5 | | <u></u> | | - | - | | d _e , in. | 1.0 | 0.85 | 1.0 | 0.85 | 1.0 | 0.85 | 1.0 | 0.85 | 1.0 | 0 | 0.85 | | 2 | 1.90 | 1.62 | 2.12 | 1.81 | 1,77 | 1.51 | 2.51 | 2.14 | 2.6 | 9 | 2.29 | | 3 | 3.49 | 2.97 | 3.90 | 3.31 | 4.26 | 3.63 | 4.62 | 3.82 | 4.9 | 14 | 4.20 | | 4 | 6.38 | 4.57 | 6.00 | 5.11 | 6.58 | 5.59 | 7.11 | 6.04 | 7.6 | ю | 6.46 | | 5 | 7.51 | 6.38 | 8.39 | 7.14 | 9.19 | 7.82 | 9,94 | 8.45 | 10.6 | 62 | 9.03 | | 6 | 9.88 | 8.40 | 11.04 | 9.39 | 12.09 | 10.29 | 13.0 | 8 11,11 | 13.9 | 97 | 11.87 | | 7 | 12.45 | 10.98 | 13.80 | 11.82 | 15.24 | 12.95 | 16.4 | 6 13.99 | 17.6 | 60 | 14.96 | | 8 | 15.20 | 12.82 | 16.99 | 14.44 | 18.61 | 15.81 | 16.4 | 4 17.08 | 21.5 | 50 | 18.27 | | 9 | 18.14 | 15.44 | 20.28 | 17.24 | 22.21 | 18.88 | 23.9 | 9 20.40 | 25.6 | 65 | 21.80 | | 10 | 21.25 | 18.06 | 23.75 | 20.18 | 26.01 | 22.11 | 18.1 | 0 23.88 | 30.0 | 04 | 25.53 | | 11 | 24.52 | 20.84 | 27.41 | 23.30 | 30.03 | 25.52 | 32.4 | 3 27.57 | 34.6 | 67 | 29.47 | | 12 | 27.94 | 23.74 | 31.22 | 26.53 | 34.20 | 29.07 | 36.9 | 4 31.40 | 39.4 | 49 | 33.67 | | | | _ | | Table C- | –φV₄, klp | s | | | • | | | | Diameter, in. | 74 | | ¥, | | 1/2 | 7, | - | 7, | $\top \top$ | | % | | ٥V, | 2.2 | _ | 5.0 | | 8.8 | 13.8 | 3 | 19.9 | | 2 | 27.1 | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | PROJECT | JOB NO. | | | |----------|---------|---------|------| | REF; SIA | SHEET | | | | DESIGNED | DATE | CHECKED | DATE | ## DESIGN FOR WALL MOMENT STRENGTH For structural walls in moderate height buildings, walls of uniform cross section with uniformly distributed vertical and horizontal reinforcement are usually the most economical. Concentration of reinforcement at the extreme ends of a wall (or wall segment) is usually not required for walls in moderate height buildings. Uniform distribution of the vertical wall reinforcement, as required for shear, will usually suffice for required moment strength. Also, minimum amount of reinforcement will usually be sufficient. not only for shear strength, but also for moment strength. Moment strength of a rectangular wall section containing uniformly distributed vertical reinforcement and subjected to combined moment and axial load can be easily calculated by: b. I $$\varphi M_n = \varphi[0.5A_{st}f_y \mathbf{1}_w(1 + \frac{P_u}{A_{st}f_y})(1 - \frac{c}{\mathbf{1}_w})]$$ where A_{st} = total area of vertical wall reinforcement = A_bl_w/s (Verfice/) L_w = horizontal length of wall s = spacing of vertical wall reinforcement A = area of each bar (Vert.) or (Horiz). P = factored axial compressive load $\varphi = 0.90$ (strength primarily controlled by flexure with low axial load.) | | HOUSTON PROJECT LP, | TX STA | DS
DP STN AZ | 3921-00
JOB NO.0101 | |---|---------------------------------|------------------|-------------------------|------------------------| | CTE ENGINEERS CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | | | pm/Pemp | / OF Z
SHEET | | | NMP
DESIGNED | 12-14-95
DATE | CHECKED | DATE | | Wet well: Precast Con
Caisson-Sin | crete 2 | Inits in | stalled | 64 | | M / // | king 1 | Nethod | <i>, 4</i> | | | Max. depth = 30.
Wall t = 8" | lnomina | e). | | | | | | | pendea | /. , | | Consider half (t) do
Hang-zip force = 0: | 50X 30'X | 0,6780 | 150 = /1 | 504/4 | | provide Six Coner 4 | perime | 746 M | . 7mi / | | | provide Six Connect | ce per | Conne | ction | | | = TT X 6.67 X 1.5 | ر
تاری <u>=</u> ح | 36 | | | | Vu= 1.4x 5.3 = 7.4 | 12 % | | | | | Ref: PCI Design Hand B | ook 4 | thed to | ble 6.2 | 0.8 | | Ref: PCI Design Hand B. de = 4 in. (min). | < 15d | = 7.5" | | | | $\phi_{c} = \frac{\pi \sqrt{\pi}}{6 \times 2} = \frac{78}{5}$ | , 0 | | | | | of = 2"Dia Studs | / | - / | // | | | L= 6" assur | ne h= | gxt= | 5.36" | | | \$16 = 8.43 k XZ = 16 | | | | | | ΦVs = 8,8 4 xz = 17. | | , / | | | | or dr = pro Con Ge a | obere | \$Ve : 0 | 38 | | | φVc = 9,124 > Vn=7. | Cw = | (1 + 3.5 de | -)=1.43 | 11:2 | | - 416 - 1112 - JVH = 11 | 74 Cz = | 1.3 de = | 1.03 /1. | 09 , | | | C _C = | 0.4+0. | 7 (18) = 3 | 3,55 (1.00 | | (for 5 \$ \$ 5 fuds) 3 1 X | t" Weld th | t. T. 3x | 4×24=. | 36k, | | 4 /c = 7.12 / 14"; | Cc =
4" Weld H
4: Ilet We | ld, Tweld | 4×6×74 | =36.K | | PROJECT | ON, Tx, E | 705 | 3971-00
JOB NO.0/0/ | |-----------------|------------------|---------|------------------------| | 2 Pump. | Z OF Z
SHEET | | | | NMP
DESIGNED | 12-14-95
DATE | CHECKED | DATE | Precast Units Connection Details, caisson Construction method. | PROJECT | r of Hou | - | 3904-00
JOB NO. 0101 | |--------------------------|-----------------------|---------|-------------------------| | L, H. 5+a
SUBJECT 100 | 4:00 : 2 p
-300 GP | m/Each. | SHEET | | NMP
DESIGNED | 12.6-94
DATE | CHECKED | /- 3-95
DATE | ``` WefWe Inste diameter = 8-0 t=12^{11}, Outside diameter = \frac{8-0}{10-0} (AsTM C361, 102^{11} w/ t=9^{11}) t=12t^{11}, Outside diameter = \frac{10-1}{10} (AsTM C76, 102^{11} w/ t=9t^{11}) t=134^{11}, t=134^{11}, t=104^{11}. Max. depth, = 30 feet in Ground- Design Lateral poessure = 105 psf/ff depth with Surcharge lateral poessure of 100 psf for "Sinking Caisson" Method: full deth- 1. Caisson at Final position. Inside water maint- ained to full depth, with full execution Inside Completed. Net lateral pressure, p = (105-63)= 42 psf/ft 2. Bose Slab, "fremie" method Completed and cured. Inside demotered Net Lateral pressure, p = 105 psf/f- ``` 3. Top Slab in place Net Lateral pressure p: 100psf + 105psf/ff. Ref: 1. ACI 318 and ACI 350 R. Z. Structural Analysis of Shells, Baker, Kovaleski, Rish 3. Circular Concrete fanks who prestressing, PCA Bulletion 57.57 (130
72.017). 4. Formulas for Stress and Strain, Roark a Young to = 4,000 psi Conc. at 28 days fy = 60,000 psi Rinef. ASTM A615 Gr. Go. | | | | -10 | |--|--|--|--| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | PROJECT Lift 5th 2 SUBJECT 100 - 3 NMD 12 DESIGNED DATE | OF HOUSTON 2 Purs DS 300 GPM CA CHECKED | JOB NO. 0/0 Z - SHEET J-4-95 DATE | | REF: Consider Cylindric REF: Free at top winder STRUE. ANALYSIS OF SHELLS $K = \frac{4/3(1-16)}{\sqrt{RE}}$ $= \frac{1.3027}{2} = 0.$ $K = \frac{9.54}{2}$ | th linear
2)
65/4 | external 10 \(\mu = 0, \text{ zo} \) \(R = 4 \) \(f = 1, \) \(walk \) \(= H = 30 \) \(A = 1 \) | ateralloog | | 105 pcf Fixed Rase | 5-13 p = 100
5-13 p = 0.00
1 M = 0.00
1 FIXED 1 | PO PSF
250-100 = 3/2
250 = 0.032
35 × 3.10 × 30 =
7 CON (PLVATIVE N. (
2.5 = 2 = 9.5°
× 1.7 × 14 = 3/16 | 14.0 lk1 fg-
Tension 0.F. | | Fig. 5.9 Fig. 5.9 Mmax = U.001x 3.10x30 ² = Mudes = 1.3x1.7x3 = 6.0 Kn = 74. | Kn = 344
Az = 0,78
3 k
6 k/4-
14
3 . | h f = 0.006
h/f #6 | | | REF.: STRUC. ANALYSIS OF SHELLS $= \frac{43(1-16)}{\sqrt{RE}}$ $= \frac{1.3027}{2} = 0.$ $LL = 19.54.$ Fig. 5.9 Make = $0.001 \times 3.00 \times 30^2 = 0.001$ Kin = 74. $\rho = 0.001$ | 16 /inear 16 /inear 27 / 65/4 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / | external 10 R = 0, 20 R = 4 ft t = 1, wall 1 = H = 30 ft 250-100 = 3/2 250- | 14.0 /h/f-
14.0 /k/f-
Tension 0:
F=0.09
18822/ff-
10.05=0:8
UNEVEN
SINEING. | | | | -11- | | | |---|---|------------------------|--|--| | ENGINEERS ENGINEERS, INC. | PROJECT Lift Stn: Z pumps SUBJECT 100-300 GPM each | 3904-00
JOB NO.0/0/ | | | | | SUBJECT 100 - 366 GPM each MMP 12-8-94 AAG DESIGNED DATE CHECKED | 1-4-95
DATE | | | | Case II: Consider Cylind, and free at to lateral load: | rical Shell hinged at | l base | | | | Fig. 5-10 Mmax = 0.001X | 3.1 × 30 = 2.8 1/4 | | | | | $M_{k} = 1.3 \times 1.7 \times 2.8 = 6.2 \frac{k}{4}$ $K_{n} = 68 f_{min} = 0.0033$ $A_{3} = 0.38 \frac{k}{4}$ | | | | | | Vmax = 0.04x3.1 | x30 = 3,72 k/f | | | | | Consider "Sinking Caisson" method: | | | | | | Hung-zp forces;
T= 0.33× 1.0×33'× 0.150= 1.69k/f
Tu= 1.61×1.4×1.69=3.97k/f | | | | | | A3 = 3.97 = 0.074in2/A | | | | | | Tilting Stresses! Ref: "Art of Tunnelling" K. Szechy , pg. 793-794. G= wt. of Sinking Caisson = 17x9x33x1,04x0.150=146kg | | | | | | G N N N | = wt. of Sinking Caiss
= 17x9x33x1,04x0.150= 1
Consider maximum till
coinches. | 146 kg | | | $M = +au C = \frac{6}{12 \times 33} = 0.01515$ H = MG = 2.21k $M = H \times \frac{2}{3}L = 48.7^{1k}$ $S_{XX} = \frac{T(10^{4} - 8^{4})}{64 \times 5} = 57.96 \text{ ff}$ | CITY OF HOUSTON PROJECT | | | 3904-00
JOB NO.0101 | |----------------------------|---------|---------|------------------------| | Lift Sm - 2 Pumps W/ | | | 44 | | SUBJECT 100, -300 GPM each | | | SHEET | | N777 P | 12-8-94 | CHECKED | 1-4-95 | | DESIGNED | DATE | | DATE | fb = 48.7 = 0.84 ksf = 6 psi axial Compression or 57.96 = 0.84 ksf = 6 psi axial Compression or Tension in walls. Tmax = 1.69 + 0.84 = 2.53 k/f Tumax= 1.65 (1.69×1.4 + 0.84×1.7) = 6.33 // A A3= 6.33/60x09=0.12 in2. =0.06 m2/ 4 ea face ZA=0.38+0.06 = 0.44 m2/f #6012"VEF. =0.78+0.06 = 0.84 m2/f4 #606"VoF.a. grd of Caisson. H= 2.21k = APh/4 Ap = 2.21X4 = 0.268ksf or 268psf Pathase = 3250+268 = 3518 psf (8,2% higher) Prop = 100+268 = 368psf Bending Lue to Ap = 268 pcf. Ref: "Stress Coeff. for large horizontal pipes," Tames M. Paris, FAR Nov. 1921 Ma = 0.337 X0,268 X52 = 2.2614/9-Horizontal Reinf. Pmin = 0.0033 Az= 0.44 in- #5012 HOPF. - = 12.5 - 25 - 1 = 11" Ea Face. F = 0,121 Km = 41. Pm 0.0013 x 1.33 = 0.00/8 A3 = 0.24 in / | CITY OF Houston | | | 3904-00 | |--------------------------|-----------------|---------|----------------| | PROJECT | | | JOB NO.0/0/ | | Lift Sto
SUBJECT 100- | 5 SHEET | | | | _ | 12-8-94
DATE | CHECKED | /-4-95
DATE | Resistance to Buoyancy: Consider total depth, = 33.0" Top 5/a6 24" = TIX 10.08 x2.0 x0.150 = 23.94k Base 5/a6 24" = TIX 10.08 x2.0 x0.150 = 23.94k Walls: TIX 9.04X1.04x29x0.150 = 128.48 (28 Joh.say Wol = 176.36k) Uplift force: consider flood up to T/Top 5/a6 P = TIX 10.08x 33 x 62.4 = 164.32k 1 Factor of Safety against floatation = 176.36 AW = 1.40×164.32-176.36 = 53.69 = 1.07. COT OF = 53690 = 51 psf NOTE: Pesign Consultant to Verify with geofectionical Consultant value of adhesion and for friction between Caisson walland Soils: Bessure growting Can restore 50 psf and larger Adhesion friction. # FP17 R. 4 FW and # 7812 TEW. | | | -14- | |---|---|------------------------| | | PROJECT Of Houston | 3904-00
JOB NO.0101 | | ENGINEERS | Lift Station: 2 Pumps
SUBJECT 100-300 GPM/ Pum | 6 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | NMP 12-12-94 A DO CHECKED | /-3-95
DATE | | Top 3/ab: | | 1 | | Design Loeds | : 41 = 300 ps | P | | DL: | : Ll =300 ps
x H-20 Truck loada
24" Lone. 5/ab = 300 ps
w/o Beams) | | | f= 4000pss; | fy = 60,000 psi. | • | | Wetwell = 8-0 diamet | ter . | | | $\mathcal{L} = \theta \cdot max - M_{Di} = 0.3 \times 8^{2}/8 = 0.3 \times 8^{2}$ | 21/ K CAASHTO | LOAN Factor | | ML= 0.3x8/8= | 2.4 TASHTO
2.4 K. X 1.3 X 1.0 = 3 | /A | | $DF = 0.9 \times 8 \times 1.3 =$ | 9.4/K X 1.3 × 1.67 = 20. | | | (a = 18, -2 - 2 = 15.5")
a = 24 - 2 - 2 = 21.5" | | | | F=0.462 (0.24) | Mu=13×23.4 Kn= 66,
= 30.4 14/4 P=0,003 | - (127.) | | A= 0.85 m²
/4- 4 | 4708 Bott. (parallel to | Louge Sole | | (0.62 in 14 ft | 608 Bott) of Access
08 TR Rott. Transverse) | Sport) | | NOTES Provide addl. Lars | each Side of opnige | * | | NOTES Provide addl. Lars of
compensate for in
Provide similar re
Slab. | terrupted by oping | 8.
UH T | | Slab. | en j. Jot valve van | 00 10p | | Value Vault: Consider for | lood condition w/ Sofuro | ted soil | | = 5 No Walls : P7/p = 0.1 80psf/f. 1=12 1=95 | 14 B. 100+7/4 7/22 = 3 | 1-6 | | mo P=100pst 18 | M. 3./2×7.67 - 2 | 1/2 ~
1/k/a | | 80psf/H. | Max 7.82 - 1.17 / 1 | 4 | | d=9.5. | V = 0.35 x 3./2 = 1.12 k/ |
U.L.a | | PB=714/psf F=0.090
#5001155 | Mr 17×13×3.1 = 6.9/ | 74
== | | #508 VEF
4012 HEF. | K= 77 Pm=0,00= | | | | | | CITY OF HOUSTON LIFT STATION - 2 PUMPS SUBJECT 100-300GPM/Pump CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. 12-12-94 Valve Vault Base Stab: Loads: Topslab 26 - 300 psf = 300 psd 2 X 1.3 X 16 k/8, 33 X 7.83 = 638 pcf CON! EIN! TIVE - [3-1"]- 175" 3-12-20 1-1112 6.67 (5.83+2×8.33)×1.0×0.15 = 345ps Walls: (No saguitary factor = 1.3 215ed). Mu= 1.99× 6.83/8 = 11.61/4 Kn=59 A/B = 6.83/8.33 = 0.82 REF. MA = 0.056×1.99×6.83=5.216/4 13,2.27 194 MB = 0.023×1.99×8.33:3,216/f d= 18-3-1=14" F=0.196 Pure = 0.0033 A= 0.55 m/f #608" Top EW. # 50/2 BOHEW-Consider Base 5/ab as Cantilever from wetwell L= 7.33 $M_u = 1.99 \times 7.33 /_2 = 53.5 /_{e} /_{f}$ $M_n = 272 \quad f = .0053 \quad A_3 = 0.89 m^2$ #606, Top SAY CONSERV. - MOM. TRANSFER TO WALL ! OKOP # 708 TOP V #80/2 TOP Value Vault Buoyancy check; CONSERVATIVE Dwls from Wall 7.83 X 8.33 X 10.17 X 62.4 DL: Topsleb (7.83×8.33-5×5)×ZXO.150 = Base 5/46 7.83×8.33×1.5×0.150 = 14.7. Walls: (5.83 + 2X8.33)6.67X1.X01150 = 22.5 F.S. aganust Floatation - 49,2 1,20 Note: Flaenlengon and Snil an Il- inill increase F | CTE ENGINEERS | |---| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | | C 177 PROJECT | 3904-00
JOB NO. 810/ | | | |-----------------|-------------------------|---------|----------------| | LIFT STA | SHEET | | | | NMP
DESIGNED | 12-14 - 94
DATE | CHECKED | 1-4-95
DATE | Value Support Pad: (No Vault): Consider ave. length of Cautilever = 8.33. Loads: D'Conc. Slab = 150 psf or 4-20 Truck loading: (Juring construction only M= 0.150× 8.33 /2 = 5.20 /4. ×1.4. 7.3 /k) =0.300× 8.33 /2, = 10.4 /k/fr ×1.7.1/k 25 k OY 2×1.30×16×7.33 =42.16/A X1.7 = 71.4 d= 12-2-1=95 No frick Allowed. Mu: 25,0 1/4 Azm = 0,37m² Kn= 278 P=,0054 #5@8"(TYP) A3 = 0.6/in # 506 Top Dw/s Topslab. | PROJECT | of Hous | | 3404-00
JOB NO 0101 | |-----------------|----------------------|---------|------------------------| | LIFT STA | 1- 2 Pum
1-300 GP | m/pome | SHEET 9 | | NMP
DESIGNED | 12-19-94
DATE | CHECKED | 1-4-95
DATE | Assume 20" & Pipe 10/50 pri pressure C 42" above floor T= 11×20 × 50 = 15.7 6 Vu= 1.7×15.7=26.7 k M= 15.7×3.5×1.7=93.4/k PVc=0.85×254000×20×17.5 bt=20×20" d=20-2-2" [7.5" F=0.508 Bn= 184 P=0.0035 A3=1,22in2 3#6 proper 50 pri pressure @ 42 of the floor Mu= 6x3.5x1.7= 35,7 /k Vu=6x1.7 = 10.2 k < \$V=12.3 k bt=12x12" d=94" #20.09 Kn: 397 P:0.0079 Az=0,90 m² 345 Base 5/ab: 8% $M_{\tilde{u}} = 17.9\%$ $M_{u} = 5.0\%$ 12% $M_{u} = 35.7$, 3.58 = 10.0 12% $M_{u} = 93.4$, = 26.0%d: 10-2-2:7,5", #= 0056, 8"\$ Bn: Posside Provide (#5087 (mia) (0,46), 12"\$ 179.' 0.0035' 0.32' (#5087 (0.46). 20"\$ 464 0.0093" 0.84 (#508"T Add/ (0.92). /- 0-0 0.0/0/ | | Houston 2 P | 4, Tx 5
- 550 Pun | 145
1957N-62 | 392 A | |---|-------------|----------------------|-----------------|-------| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | | | secured | SHEET | | | | 11-29-95
DATE | | DATE | | VALVE VAULT: 12'X12! | 2" × 3-8"W | alls t= | 1211 | | | Grating-FRP = | 150 PSF | | | | | | | | | | W = |75psf|GRATING SUPP. BEAM; $L = |0|^2 2''$ $W = |75(\frac{3.17+2.92}{2}) = 533plf$ Pam.Wt = 42 $M = 0.575 \times 10.17^2/8 = 7.41k$ $V = 0.575 \times 10.17/8 = 2.92k$ W = 2.92k W = 2.92k W = 2.5.16 W = 2.92k Provide single plate shear connection. No. 15.1k Provide single plate shear connection. No. 15.1k Provide single plate shear connection. No. 15.1k N Wall Face PL 3 X6X8" W/ Z-34 \$X6 Lg Studs. PIT WALLS: a/b = 11.00 7.67 b=9.67 b=9.67 a=11.00 COFHERS | CTE ENGINEERS | |---| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS INC | | | | | 3921-DO
JOB NO DIO1 | |---|------------------|---------|------------------------| | 2 Pumps @ 250-500 GPMEA.
SUBJECT SECURE & SITE | | | 20F3 | | DESIGNED | //-30-95
DATE | CHECKED | DATE | ``` dv=12" 2- 2= 9.5" F= 0.093 dy= 12-3-2=8.5" F=0.072 BA 207 P- 0.0040 A3 = 0.54 cu2/4 #58/20Fe K+ = 24 P. =0,0013 A5 = 0.18 mills ``` #481ZHEF, Bnv = 242 P = 0.0047 As 1 0.71. 14/4 450 6 Duts OF Kpv . 34 #5012 " IF. Ac, 0.20 cm/4 Pomme 0.00/3 #4eIZVEF. 5 Free 0/6 = 11.17 = 0.58 6=9.67 Mx = 0.8592 x 9.4 + 0.0406 x 90.4, = 11.7 16/4 Mu=2014/A My=0.0807 X9.4 +0.0214X90.4 = 2.7 My=0.1212 X 9.4 +0.0584X90.4 = 6.4 =4.6 = 10.9 My = 0.0245 x 9.4 + 0.0139 x 90.4 = 1,5 = 2.5 4/4 KinH = 278 P= 0.0054 KinH = 63, P=0.0013 AsH=0.73 in2 45@80FG A34-0:18 # 40/2HE Knv = 117. P=0.0023 A3, -0.35 # 5 EC DWL. SA KAT = 27, f = 0.0013 = 0.20 #4e1ZVEF BASE SLAB Dead Loads: 12 walls 2x11.5x8.67x0.150 = 29,9 k 1×10.17×8.67×01/502 13.2 16"Base 51-6 = 11.5×12.17×1.33×0.190=27.9 Soil wt: (2×12.5+12.17)×1000×006 = 22.3 2/plife = 11.5×12,17 ×10.0×0.062 = 87.3kg Factor of Safety against flootistion = \$3.3 = 1.07 (1.25 | CTE ENGINEERS | |---| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | | | | Houst
PROJECT | on Tx | 5+2 | \$ | | 3921-00
JOB NO. 0/0/ | |------------------|------------------|------------|--------|----|-------------------------| | 2 Puni | s - 25
cure d | 0-5
512 | OO G | M. | 30F3 | | DESIGNED | //- 30 | -75 c | HECKED | | DATE | Resisting Force required = 1.25×87.3-93.3 Shear Transfer to Wet well will provide; 15.8 = 7.9 %. H NOTE: See Sht. 2 of 4 of 3-pumps, 250-2000 Gpm EA. Secured Site pump Stn. Calos. For wall bracket and down bar designs. BASE SLAB: | PROJECT | | | | |--|------------------|----------------|------------------| | STD, PUMP STH - ZPUMP -
SUBJECT 250 - 500 GPM EA. | | | SHEET | | NMP
DESIGNED | 10.25-94
DATE | JAM
CHECKED | 11. 4.94
DATE | ## DESIGN CRITERIA: (Sht. C2) Design Grade Floor; Live Load: H-20 Truck Loading. OR Max. Pump wh: = 5000 lbs. Or 2/DL = 300pst. Dead Load: Consider 24" Slab w/o Beams. Simple and Cost-effective. 24"Conc. = 300pst WET WELL: L= 10.65 ft W= 300pst, Mol=0.3 x 12.65 /8 = 6.0 1/f Mol=1.3 x 1. x 600 $\begin{array}{l} \omega = 300 \, \text{pcf}, \quad M_{DL} = 0.3 \, \times \, 12.65 \, \text{ff} \quad \text{ff} \quad M_{DL_{a}} = 1.3 \, \times \, 1.000 \\ \omega_{LL} = 300 \, \text{pcf}, \quad M_{DL} = 6.0 \, \text{ff} \quad \text{Impact.} \\ W_{LL} = 0.0 \, \text{pcf}, \quad M_{LL} = 0.9 \, \times \, 12.65 \, \times \, 1.3 = 14.8 \, \text{ff}, \quad M_{LL_{a}} = 1.3 \, \times \, 1.67 \, \times \, 14.8 \\ \hline \left(\begin{array}{l} \text{AASH70, 3.22.1A} \\ \text{Table factors} \end{array} \right) \quad M_{LL_{a}} = \frac{\left(12.65 + 2 \right) \times \, 16 \times \, 1.3 = 9.5 \, \text{ff}}{32} \\ \overline{\left(\begin{array}{l} \text{Table factors} \end{array} \right)} \quad M_{LL_{a}} = \frac{32.1 \, \text{fc}}{32} \\ M_{LL_{a}} = \frac{32.1 \, \text{fc}}{32} \\ M_{LL_{a}} = \frac{32.1 \, \text{fc}}{32} \\ \overline{\left(\begin{array}{l} \text{Table factors} \end{array} \right)} \quad M_{LL_{a}} = \frac{32.1 \, \text{fc}}{32} \\ \overline{\left(\begin{array}{l} \text{Table factors} \end{array} \right)} \quad M_{LL_{a}} = \frac{32.1 \, \text{fc}}{32} \\ \overline{\left(\begin{array}{l} \text{Table factors} \end{array} \right)} \quad M_{LL_{a}} = \frac{32.1 \, \text{fc}}{32} \\ \overline{\left(\begin{array}{l} \text{Table factors} \end{array} \right)} \quad M_{LL_{a}} = \frac{32.1 \, \text{fc}}{32} \\ \overline{\left(\begin{array}{l} \text{Table factors} \end{array} \right)} \quad \right)}$ d=74-2-k=21.5" F=0.462 A3=185in #60 6" Bottom (0.88 in) ft). 2/50 > #70 8" Bott. (Parallel to Long Side of Opng) NOTE: Provide Addl bars equal to LInterrupted by opng VALVE VAZILT: on ed. Side of opng (5tmct. 5td.) Top 3/66: L=11.17' 2/50 Same reinf as inefwell- | PROJECT | OF HOO | | JOB NO. (2) (0) | |----------|------------------|----------|-----------------| | STD. P | 5 - ZPum | PS | ≥ | | | 250 - 500 | BGPM EA. | SHEET | | WMP | 10-25-94 | CHECKED | 11-4-94 | | DESIGNED | DATE | | DATE | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC VALUE VAULT WALLS: Consider flood Condition with Soil Saturated to full height, equivalent Lat. pressure of 80pf. Wall Vert span = 6-8" wall thick = 1-0" 718" 17/P = 0.14 D = 100+714 x7.67 = 3.12k Mmax = 3.12x7.61 = 3.1 1/4 7.87 V7 = 0.35×3.12 = 1.12 K VB = 0.65×3.12 = 2.0 K Sanist. Factor Mu = 1.7×1.30×3.1=6.9 //4 A = /2"- 2"- 2" = 9.5", F=0.090 The 76 P=0.0014 Prin 2 0.0033 = 2/se A3 = 0.38 in / A-#50811 Vert EF. #508" Vert EF. #4017. EF. VALUE VAULT BASE SLAB: Loads: Top S/ab A=11-2" m=0.87. B=12-106(±) = 300psf. 35.92k Walls (10.17'+2x12.87)x 0.150x6.67'= 197 n 13.17'x 13.87' 14: 2x20.8/13.17 x 13.87=227psf. Or = 300 psf. $M = 0.797 \times 1/.17^2/8 = 12.4 \frac{1/4}{4}, Mu = 24.2 \frac{1/4}{4}$ Or $M_A = 0.050 \times 0.797 \times 11.17 = 5.0 \frac{1/4}{4}$ $M_B = 0.026 \times 0.797 \times 12.87 = 3.4 \frac{1/4}{4}$ $M_B = 0.026 \times 0.797 \times 12.87 = 3.4 \frac{1/4}{4}$ $M_B = 0.0033, A_3 = 0.48$ VALUE PAD: Loads: 10 Conc. 5/ab, F=0,0483 MA = 0.040x.275 x 7,672 = 0.65-16/6 MB = 0.033x.275 x8.17 = 0.61/4/4. Provide 45012 TaB EW (min). VA = 0.55/2 × 0.275×7.67 = 0.58 4/4 Provide 1-0" widthat bottom of Gr. Wall- Check Bouyancy of Vault: hw = 2.0 Top slab 6.67 walls 1.50 Base slab. hw = 10.17 Z4/1A = 62.4×10.17=635psf) | | Houston, Tx 51ds 3921.00 |
---|--| | CTE ENGINEERS | 3 Pumps @ 250 - 2000 GPM / 1-D) | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SUBJECT Low Profile - SECURE SHEET & 4 | | | NMP 11-10-95 CHECKED DATE | | Valve Vault: 15:0"x 20: | TUESIGNED DATE CHECKED DATE | | | <i>//</i> | | J // | 25 ps 2 | | Z-Z = | 175 psf | | Beaun: L: 18-3" | 1/3 /23/2 | | 12 = 1250 elv/ | (4.33+3.17) = 656 plf | | P | 2-11/2 656 517 | | Bm wt | 300 pt. | | M = 0.7 × 18.25 = 29 | 2 1 1k 100 pr. | | W = 12.78 k V = 6 | | | N = 12.18 = V3 6 | .39 & W8X24 MR=81 /2 /
lu=18.25 | | Dapprox = 1.00 x 12.78 | = 0.7/ = L | | | 308 | | Single-plate Shear Con | 13/6 x 1/2 Loag (Hosiz) Stated 6 7- 34 6 0375 Ballo | | 30"7 × 6"X 6 W/ | 134 × 1/1/2011 1 1 1/1/2 | | 46/18 | for 7- 2" 1 page Rolls | | Vallow = 8.2 k | | | | > V = 6.39 % | | Wall face The 3"X ax | (8" w/ Z-34 \$ x6 Long Studs. | | 1 | 2, EM. No. 27 | | l — — — — — — / | E, EM. No. 27 | | End Panel: 19.3 x 9-8" | $0 = \frac{19.25}{2 \times 9.67} = 1.00$ | | FREE T | JAADST. | | | 1000cf (7 5 - 7,33 | | ole 1 | 112-2017 7 | | FIXED T | p'b2=0.967 x 9.67 = 90.4 | | - * "mmmmer * * * | 18 b = 0.967 x 9.67 = 9.35 | | 19-3" | 1067psf 8 | | Mx = 0.1x9,35+0.0276x9046 | 3,43 /4 Min = 5.8 14/ft | | Mx = 0.2613 x9.35+0.0644x90 | 0.4 = 8.26 = 14n. | | M= 0.2043 x 9.35+0.0845 x90 | 4 = 9.55 H/F = 16.2 1K/F | | J | | | • | | | |--|--|---| | CTE ENGINEERS CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | Houston Tx Stds. PROJECT 3 Fram P 87a - Valve Vault SUBJECT 400 P 11 12 95 | 3961-00
JOB NO.0/0/
20f4
SHEET | | My = 0. 0243 x 9.35 + 0.0159. | DESIGNED DATE CHECKED | DATE | | 1119 - 0. 0243 x 4. 03 + 0.0134,
Au = 12-2-2-9.5" For 0
Au = 12-3-6 = 8.5" Fu = 0 | | e | | KH = 200. R=0.0039
KH = 83. P=0.00.16
KH = 180. R=0.0034 | A= 0.29 #50) | 1740F
1240F@(01
1241F | | $K_{\nu} = 180.$ $K_{\nu} = 0.0034$
$K_{\nu}^{\dagger} = 32.$ $R_{\nu}^{\dagger} = 0.0013$
Base $5l=6$: | A= 0.37 +5012 | 4"VOFDKIL
VIF | | toats: DL: /walls | 2 X 8. 67 X /4.50 X 0.150 = | 37.7 4 1 | | Base 5/ab: toats: D1: /wall: /6"Bese /wall | 1×19.25 ×8.67×0.150 | 25.0 | | up 1177= 13 x 20,25 x 9 | X 0.062 = 170.689 | | | Try 10"wide projection of
Soilw# = 0.06x1x | of Base Slab.
9 (18.25 + 2×15.50) = 40.9 k | -6 | | [] WOLKET = (1.25 X 170. | 6-123.3-40.9) = 49.6 f | c. / | | Consider this provided by well: | Shear transfer thm | age ! | | V= 24,5 k/ Wall-
Ab= 0.60 in= | #7812 "dw/s = 8#7 c | lw/s. | | $\phi V_{c} = 0.85 \times 800 \times 0.6 \sqrt{400}$ $= 0.85 \times 2.00 \times 0.6 \sqrt{400}$ | 4000 = 25804#. | | | Vu = 24.5 × 1.7 = 41.65 kg | 8#7=12.16×8=97.28 | | | φV _c = 0.85×2 /4000 ×12×96 | 6=123.86 >> Vu: 41.65 | k | 3921-00 JOB NO.010/ 3 of 4 SHEET | ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | | | | |---|-----------------------|------------------|------------------| | | Hous ton | Tx Std | <u>چ</u> | | CTE ENGINEERS | | s - 250 - 1 | | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | DESIGNED | 11-13-95
DATE | CHECKED | | Bracket from wet well we Consider 5' wide be from Vault 3 | all: | , | / 0 | | Consider 5' wide be | ase slab | and i | 5-0 of we | | P= 1-6" 5/26 @ 22.5
11 @ 150 psfx5 | spsfx5 | 1 - 1125 # | 4/4 | | 12 @ 150 psfx5 | , P = | 1875 | * 14- | | Pwall = 0.150 x 8.67 x s
W= 2.6° stab | 5' = 6,50
= 375 p: | s f. | | | | • | , | | | CONCOCE TOWARD CANADODRAIS CALCULATION | SUBJECT ' | | | SHEET | |---|-----------------|-----------------------------------|--------------------------------------|--------------| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | WMP
DESIGNED | 11-13-95
DATE | CHECKED | DATE | | racket from wet well wa | :ll: | , | | | | Consider 5' wide ba | se slab | and 5 | brack | alls
let. | | P= 1-6" 5/26 @ 225
11 @ 150 psfx5" | psfx5 | - 1125 #
- 750 | 4 | | | Pwall = 0.150 × 8.67 × 5 | ! = 6,50 | 1875 * | 74 | | | WE 2-6 1/03 | = 375 ps | <i>52.</i> | | • | | Assume Wet Well w | | - - | | | | Iman = (10.25 - 10.25
Lave = 2.5 | 5 Cos 4. | (50) + 1,00 | = 4,00' | | | Mais 0.375 × 2.5 /2 . | 2.3 1/ | A | | | | 1.875 x 2.5 _2 | 4,7
7,014/G | , | | • | | 1.875 x 2.5 =
Mmax 0.375 x 4/3 =
1.88 x 4 = | 3,0
7.52 | | 11 | | | 4=18-2-1 = 15" | 2. 52 M/H | X/17= 17 | 914 | | | | O Pmin | . 0.002 | 2 ·
- 3 //: | | | Provid | de As | 20.32-
46e12 (1 | o.44). | | | Wall as bracket: L=4 P= 6.5k. W=1.3 | 4.60 | M- 1. = 4 | 4/2- 2 | /k | | OR Fupliff = 24.5k | 7/7- / | N= 6,5 X
1,3 X 4
upliff=24. | 1.6 ² / ₂ = 19 | 1.0
1.0/k | | - <i>F</i> | M | up 1. A = 24. | 5X4.6=// | 3/K | | | 177 | | 711 | 720-7 | |--|--------------|--------------|-----------------------|------------------------| | | Housto- | nslx | 5745. | 392/-00
JOB NO./0/0 | | CTE ENGINEERS | 3 Pum to | 5- 750 | D-2000 GA | | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | 1000000 | | | SHEET | | and a second a second and a second and a second and a second and a second a second a second a second and a second | NAP | 11-14-9 | CHECKED | | | P. J. P. C. " S. 4/1/2 / 20 | sia - " // | DATE | // | DATE | | Ref: PCA- Simplified De | sign she | ar wa | 115, pg.6. | -/3 | | Mu=1.4x44,= 62/6 | -11 | | | ! | | Mus=1.7×113=192160+ | CONTROIS. | | 7 Pu= | 0 | | \$ Mm= \$ [0.5 Asty lw (1 | + Fu) (| ر (پیچر – ۱ | Ar = # | GEIZHEF | | $\epsilon = .\omega$ | | | | 14X8X2 | | E = W = 2W + 0.85 B, B | = 0.85 for | fo= 400 | | 4m² | | $= \frac{0.085}{0.17 + 0.72} = 0.095$ | | | | 7×12=104" | | ON - 0. 00 TO EVIAUV. | INVIDÁVA | 005-7 | W = Ast | | | PMn= 0.90[0.5x7.04x6 Base 5/66: 12 | 00×104×0. | 705/ | Lwh | x 5, | | | 014 >> 19 | Z /k | = 7.04 | 2 × 60 | | l= 19-13" | | | | 1 | | Wupliff = 9x0.062 - 1. | 33×0:15 | - 0. | 367 6 | P / | | M = 03/34/07/2/ | " ID | - 00, | JOE EST. | • / | | M = 0.362 × 19.25/8 = 16. | 8 1/ fl x 1 | .7×1.3 | = 37,16 = M | u. | | V = 0.362×19.25/2 = 3.4 | 18 44 | | 7.7 /4= 1 | | | t . 16" (mm) . d = 16 | - 2 - / 2 /2 | . = 4 | | ^- | | 70 (1000) 19278 | F = 0. | 107 | | [| | | | _ | / | | | | m = 20= | • | 0.004 | | | | | _ | 0.65 cm2 | | | | | #66 | 8 Tinle | oug direct | | , | | # 5 CB | "Tim St | 7874 | | Pit Side walls: | | #5017 | 807 EW- | | | | 1 1=1 | | | / , | | -1 | 6 = 199.6 | 7=16 | > 1.0 2/3 | 10 - | | /5-0 | \$ 62 = | 9,35 | \$6.0.9 | 7 | | Free - | p62= | 90.4 | p6 = 9.3. | 7 | | Fixed | '8 M | 1-0 | 148/72/ | = 3.814/4 | | | ///Ca | nt = 0. | 1×8.67 /2
×8.673/6 | =10.9 | | Arritement & | | J., | NO 161 /6 _ | 147/4 | | F= 100 / | 267ps f= fs' | Mu= | 25/4/A | (1 () []] | | 1 1 1 | | m= 2 | 78 P= 0 | 10054 | | | | A3 = | 0.62 in3 | 16 | | | | . بعد | / / | 42.7 10 17 | | ENGINEERS | -
) | |--|------------| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC | <u>-</u> . | | PROJECT | of Hou | <u> </u> | 3904-00
JOB NO.018/ | |-----------------|------------------|--------------------|------------------------| | SUBJECT SUBJECT | 3Pumps, | 250-2000
GPM EA | SHEET | | MMP
DESIGNED | 10-27-94
DATE | JAM | (1-4-94
DATE | WET WELL: (Strt. 66) TOP 51AB: TOP 51AB: Th: Equipment etc. = 300psf. OR H-20 Truck looding. Max pump wt = 5000 lbs DL: 24" thick Cove. Slab = 300psf. Lmax = 2 -2.15+8.252 - 15.92 +2.0 = 17.921 M= 0.300×17.97/8 = 12.014/4 ×1.0 = 12.014/4 ML1 = (17.92+2) 1.3×16=12.914/4-- controls Or = 0.9 × 17.92 × 1.3 = 21.0 1/4 × 1.67 = 35.0 1/4 factor Mp,=,33.016/4 My = 47.0 14/4 X1.3=61.1 NOTE: Additional moment due to oping s. AM = 2.45 x 12 x 1.3 = 33.5 12 d= 24-2-4:21.5" K=132 F=0.4621 P=0.0026,
Pmin=0.0033 AKn=72, Kn=204 P=0.0049 A3 = 0.85 in/H A3=103 in/H =606 BoH10.88). #808 (1.19) Both 508"Tenup. VALVE VAILT: TOP SLAB = L= 19-1311 MDL = 0.300 × 19,25/8 = 13,9 14/4 × 1.0 = 13.9 14/4 MIL = 0.9 × 19.25 × 1.3 = 22.5 1/4 × 1.67 = 37.6 16/A My = 51.5 16/ft Addl. Mom. due to opng. AM = 2,0×13,9= 27.8 Mr. Jes 1.3 (51.5+27.8) = 103/k/A Km= 223 P= 0.0043 Az= 1,10in2 #8 = 8 Bottom - #508 Temp. Steel. | | | | | -29- | |---|---|-----------------------|------------------------|-----------------| | | C/74
PROJECT | of House | ton, Ts | JOB NO.010 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | STP. P.S. | - 3pun
250-2 | DO GPM | T | | | NMP
DESIGNED | 10-31-94
DATE | JAM
CHECKED | 11-4-94
DATE | | VALVE VACIT WALLS: | | / | | | | Same as for } | ump sta | tion - Z | oumps. | · | | BASE Slab:
100 ds: Top Slab Z
11
Or 2×20.8/20.25,
Walls (2×15,0+18,
20.25× | ,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 0 | | | Loods! Top Slab Z | 4 thick | : 30
: 31 | pepst | 420 | | or 2x20.8/20.25 | X15.0 = 137 | Tpsf | sp spa | se 5/0 | | Walls (2x150+18 | 42)X6.67 | X0.15 = 16 | o pef. | 224 | | 20,25 X | 15,6 | W= 7/ | now Wi | = 1154 psf | | A = 13-8" M: 0.71 | / . | 70 | opel Wa | (1.52) | | MA = 0.068 X1.15 X13.67 | | , , , | | | | MB:0.016 X1.15 X19.25 | = 14.67
= 6.81k/+ | . 11-
4 | | | | t=16" d=16-3-1=1 | | , | | | | F = 0.144 | 0 | _ | | | | Kma = 101 P= 0.002 | min | 0.0033 | Ż | | | #5@8"T FW | | 0.48 in | | | | #5012' BOH EW. | t=16 | Base Slo | <u>6</u> . | | | check Bouyancy of Value | e Vault, | | | | | hw = Top stab t= 2'01 2" wall ht = 6'8" | DL: To
Wa
Soll
Bas | p slab | - 300 | psf | | wall $ht = 6.8$ Base $t = 1.6$ $10-2\pi$ | Wa
501 | 1(6"); | = 300
= 160
= 60 | P5 F | | 3/p/iff = 635 psf 1 | Bas | e 5/a6 | z 225
745 | / | | F.S = 745 = 1.17 & 1.20 | | | 195 | \$5.T | | Note: May morease | e base | Slab to | jerdion | Lon | | Note: May morease | F.5 = 1/2 | 7. | 5-41-1 | / 40/17 | | | · | <u> </u> | | | | | ENGINEERS | |---------------------|--------------------------| | | | | CONSOER TOWNSEND EI | WIRODYNE ENGINEERS, INC. | | PROJECT (| 3904.00
JOB NO.0/0/ | | | |-------------------|------------------------|-----------------------|-----------------| | SUBJECT W/ | 3 Pumi
O VAULT. | 05,250-2000.
EPMEA | SHEET | | NTN P
DESIGNED | 10-28-94
DATE | CHECKED | 11-4-94
DATE | W. 125psto 175 VALVE PAD: Consider two-way slab A=10-4" B=15-0" M=0.69 (Sht. C9) MA = 0.068 × 0.43 × 10.33 -3.1 16/4 MB = 0.016 × 0.43 × 15.02 = 1.6 16/4 d=10-3-1 (1.56) Km= 73. P=0.0014 Amin : 0.25 #500 provide #5012 T& Both. Ew. F=0423 VA = 0.85 x 275 x 10.33 = 1.21 4/4-VB = 0.15 x 275x 15.00 = 0.3/4/4 Consider Soil Bearing press = 1500psf W= Gr, Floor = 1.214/4 GR Am 10×20 = 0.22 Width of footing = 1.43/1.50=0.954 Provide 16 width of bottom. Alt: Consider contilever from wet well: L = 11.33' Wa= 43095f Mu= 0.43×11.33/2 = 27.6 1/f d=125/ab-2-4=9.5" F= 0.09 Kn = 307 P=0.006 A=0.68eu/H #608Tat Wef well Wa/!,. OT #5 CBT + #5016"Addited Confinuous & wall | | | | <u> </u> | -31- | |---|-----------------|------------------|-------------------------|---------------------| | | PROJECT | OF HOUST | o N | 3904-00 | | ETE ENGINEERS | 570 25. | 3 Pumps. 2 | 2000-5300 | JOB NO. <i>0101</i> | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SUBJECT | | PM/PUMP | SHEET | | | MMP
DESIGNED | 10-31-94
DATE | CHECKED | 11-3-94 | | WET WELL: TOP SLAB! | - | | Shf. (11) | | | 1= 7-13/2" | | • | • | | | | | | | , | | 8-92 | W= 12 | "5/ab = | 15005 | / | | , | 11 | 210. = | 300 PS# | | | 2 , | OR 11-3 | 2021 | · ' ' | | | 0.300 x 8.8/g = 1.45 | KIA XI | 10 X/3 = | 1.91 | , | | 0.300 p 8.8/8 = 2.90 | K) A | 7-5 | auitary fac | ctor | | OF 0.9X88X1.3 = 10.3 14 | 1/4 ×1. | 67X13=2 | 2.4K | | | 4 | , | Mu = 2 | 4.30 1/4 | | | a=12-2-2"= 9.5 | | | | | | F = 0.090 | . 1 | - 2 | | 11 | | Kn = 270 P=0.0053 | K32 | | | | | Beaus: | 1 | | #5&8*T1 | EW | | Loads: DI : W. a | of & of SA | an 150X7 | 3/= 0.50 | 414 | | Beausi DL: W/ a | flapoint | 150X6.0 | 72 = 0.45
13. = 0.45 | | | Am Wt. | <i>15X3.0X0</i> | 7.15 | = 0.67 | = 0.75/4- | | Hatches C | 2 30psp1x | 2.55 | , - 0100 3 | / 1 | | 22! @ 300 pst | X (3,65) | 2.554/,50, | 1=2.3/4 | | | 106. Can | ٠, | 2,55+1.50) | | = 2 | | Con | sider u | DL= 0.55 | k/4 in s | mid-half | | -w= 0.75 k/ff | | 11=2.3/4 | | 1 1 1 1 | | 20.72. | | | and Pi | al Support | | WoL= 7.77 k 7.77 k | M= | 30×10, 30 | | M = M + 1 | | 2.85 | | 7.77 × 5. | 4 _ | | | WL = 11.97 12.05 k 11.97 12.0. | | .43 × 6.98 | | | | 5.98 5.98 | -2 | ·85×2.59 | 7 = - 7.4 | 4 | | 30.0 17.95k 30.0k /7. | 95 - //. | 97× 2.59 | = - 30 | 9 2720 | | 1/- 17.05411/- 1/ 07 | - J, | 98×6.90 | | | | 17.95×17=30.53 | Tu = 491- | - 14457.5- | 1.7x 72:2 | | | Vic= 47-40 k (1.58) | = 491- | 80.5 - 122. | 7= 787.8' | Æ | | | | 32 - | |--|--|------------------------| | | PROJECT OF HOUSTON | 3904.00
JOB NO.0101 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | 570 Yump 5TN. 3 PUMPS
SUBJECT 2000-5300 GAM | SHEET | | | DESIGNED DATE CHECKED | (1-7-94
DATE | | | 9-3-1=26" | | | F = 1. | 014 | | | By = 287.8/1,014= | 184 F=10055 | e B-H | | PV = 18×26 × 2 /4000 | 1×0.85 = ================================== | Top Cont. | | = 50,32 k / Vu= 9 | 7x0.85 = 2.57 cm². 4 # 2
2#7
47.46. # 4012" [] +hm | out. | | , | | | | TOP SLAB: | <i>i</i> | 7 24" | | -TOP SLAB:
l = 716" | W = 12"5/a6 = 150 P = 7 | 300 psf | | 9-00 | W = 12"5/46 = 150 P = 7
11: 2/DL = 300
Or H-20 Loading, | F=0.441 | | (10300)
11=0.150×9.012=15 | 16/4 (3.0) X 1.32 | , | | 0.900x9.0x1.3 = 10.5 | X1.3X1.67 5 (26.7)
1/4 × 1.8×1.67 = 25.7 1/ | 4/0 | | たいとうが ションバンカのグ | | 14-
11/- | | m=(66) (P=0,0033) | 172=0.83 #368 Top E | w and | | Beams; use | = #708 Boll, Transus | git). | | 1 = 21-9" =/c.
W = D1: 12"5/c. | (300)
6 150× 3.75 = 0.564/47 | | | 18×24" B | 6 /50X 3.75 = 0.56*/47
3m; 1 = 0.95 \1.09 | X1.4=1.53 | | Hatch e | B 150x 5.15 = 0.56*/H 1
Bm; = 0.45 \ 1.09
BOPS + x 2.55 = 6.08 \ (1.65)
B3.75 + 1.5 + 2.56 = 2.34 44 x 1.7 | (231) | | (6.29) 2 (37) | 2) X12 K/2/1 | | | $M_{n} = \frac{5.51 \times 21.75}{325},$ $77 = 18 + (54.29)$ | 8 x 1.3 = 424 (b = 24") of = 21"
(54.13") f = 0.662
21 = 40.6 kg Kg = 640. | (6.29) | | (65.3) \u_1 = 47.56 47.5 | (54.13k) F = 0.662 | (0.882) | | 9 Vc = 0.83 X 7 \ 4000 \ X 18 X | 21=40,62 Km= 640. | (549) | | 4 18 - 1.00 = #47 (410 G | 16 thouse1 1 p = 0,0/35 | (001/3)) | | \$ 15/hu = 0.016 | Az 5.10.22 - 5.6912 2 | 7 #8 BAT
#8 TOP | | (See 3hl. 10 - Top slab. + | = 24 W/OBMS) (8#8 BOTTA | in 24 with | | " // | | | | | | | | 3,3 | |---|---------------------|-------------------------|---------------------|------------------| | | PROJECT | OF HOUS | NON | 3904-0 | | ETE ENGINEERS | STD PUI | np STN-37 | amps - | JOB NO.0/6 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SUBJECT | 10.31.94 | OO GPM/P | SHEET | | | DESIGNED | DATE | CHECKED | (1-7-92)
DATE | | VALUE VAULT: WALLS: | £=1211 | h= 1-6"+ | 9-25+1-0= | 11-82 =11.7 | | 1 = 100 pst | PP | = 0.096
= 0.10. | P=100+ | 1.036× 11. | | BOBSE | | | 6,65 | ~ | | h=11.7 | Mmax | = <u>6.65 X</u>
7.82 | 11.7 = 9.9 | 1k/4- | | | | 1-7X1.3X9. | | | | -1036 pet - P | | | 0,081 | , . | | t= 12" = 12"-22- 1= 9" | | Pm= 2 | | | | t=16" d = 13" F=0.169
Kn= 130 P=0.0025 | 5 | P = 0. | 7 in 2/4 | | | fanin = 0,0033 | •, | #608" | Vert LF. | | | | (0.66)- | #528 | Vert DF. | - | | BHSE SLABS | | n' | Hotel EF | • | | | 150psp | | X1.4 = 21 | | | Walls (ZX20.5+20.75) | 300
.
X10,20X/5p | / | 11.7 = 51 | | | 22.75×20.5 | | - 202/05/4) | (1.4 = 284 | | | A = 19.50
B = 21.75 M = 0.90 | | Q. | 1004
1305 p | X1.3 | | MA = 1.31 X0.045X 19.52
MB = 0.029 X 1.31 X 21.752 | = 22.4 | 14/4 E | = 16-3"
= 0.144 | 1=12 | | MB=0.029X/13/X21.752 | = 18.0 " | ke/4- | | | | Kn= 156, P= 0.0031, | Popla: 0 | 0.0033 y | 13=0.48, | in 2 | | Kn8=125, 8=0,0024 | | <i>‡</i> | 508 Top
5012 Box | EN
U IN. | | Check Barrie | | 1 | 5 6/2 1001 | 1.50 | Check Bouyancy: Thu = top stab = 2-01 = 12-82" 21pliff = 62.4x12.79 DL = 245/b = 300 12" walls = 202 18" Base 5/b = 225 645 psf | 37 D. PS 3 PUMPS 10
SUBJECT 2000 - 5300 GPM/Ea SHEET | OF HO | | 3904c | | | |---|---|-----|---------|--|--| | | 37 D.PS 3 PUMPS
SUBJECT 2000 - 5300 GPM/Ea | | | | | | MMC 11-2-94 JAM 11-7-
DESIGNED DATE CHECKED DATE | 11-2- | J W | 11-7-96 | | | Consider 1:0" Ftg. three side Boayant wt of Ledge Soil (2x20.5+24.75)x11.7x0.060 = 46.2 k IWDL = 645+100 = 745 psf 1.1 for F.S. against boarancy = 1.20 DD = (1.2x792-745)=205psf1 Extend base 5/ab 240 beyound 1-4 thinghe walks Soil wt = (2×20,5+27,58)× 11.7×2×06 = 46.3 = 201 psf 501 wt = (2×20.5+27.58)× 11.7×2×06 = 96.3 = 20.5×23.42 20 1.4" wall = (2×20.5+23.42)×9.2×1.33×150= 118.24 NoL = 0.30x 21.75/8 = 17.7 16/4 x1.0x1.3 = 23.016/4. MIL = 0.30 x 2/175/8 = /7.7 14/4/ 0.9x 21.75x1,3 = 25,4/4/4 | x1.67x1,3 = 55,1 1/4 d= 21 F= 0.441 Km= 177 P = 0.0033 A3=0.84 = #708 Both parallel to Hatch, opings. #508 Dist. Reinf. | C177
PROJECT | OF HOUS | TON, TX | 3904-00
JOB NO.0101 | |---------------------|---------------------|-------------------|------------------------| | STD P.S.
SUBJECT | - 3 Pump.
5300 G | 5-2000-
OM EA. | //
SHEET | | NMP
DESIGNED | 11-2 - 94
DATE | JAM | 11-7-94
DATE | ``` TOP SLAB! BEAMS BETWEEN HATCHES: 6xt = 11"x24" bxt = 16"xz4. a/= 20," L= 5-02 } = 7-02" F=0400 X1.33 = 0.532 2-0 } = 7-02" F=0400 X1.33 = 0.532 W= D1 & 300 psfx 1.33 = 400 x 1.4 = 560 plf. LL & 300 psf X 3.58 = 1674 X 1.7 = 1826 n, 1 M= 2,39 x 7.04 /8 = 14.8 1/k x 1.3 = 19.2 1/k 2386 Vu= 2:38 × 5:04/2 = 6.0 k (4/2) or 1-2+20.8 = 22.0 b=11" 12 0.85 x 2 \ \ 4000 \ X 16 \ X 20 = 34.4 \ \ X 11 \ X 20 = 23.65 \ \ . F=0.368. Pm = 62 Pmia = 0.0033 L3 = 1,06 in 2 = #8. TB B.OTT X 9-0 Lg. #3 17 C 8 STIRRUPS. Value Pad: A = 15 U62 150 pof 1 Mz 0.81. B = 18-6" MA = 0.061x0.43x15 = 5.914/4 d=12-3-1=8" Mg = 0.023 x 0.43 x 18.5 . 3.4 14/A F= 0.064 VA = 0.71 × 15 × 0.43 = 2.29 4 A 0.30 = 1.64/A- Kng 92 Punia 0.0033 Az 0.32 cul 4 Gr. Wall 1.0x2.5 & 0.150 = 0.38 / 1,98 4/4 #5012 BoHEW fraring 1.98 ksf (3.00 ksf) ellowable #300 Top Eco- ``` | HOUSTON TX | STOS | PSTN-EZ | 392]-00 | |-------------------------|----------|---------|--------------| | PROJECT ZP | 556 Pum | | JOB NO. O(O) | | 3 PUMPS C
SUBJECT LO | SHEET 7 | | | | CEO | 11/14/95 | CHECKED | 11-21-95 | | DESIGNED | DATE | | DATE | ## VALVE VAULT 1 21-2"X24-9"X13-0" W/ Z-0" Wools GRATING: FRP = 25 pst LL = 150 psf 175 psf - DESIGN FOR CRITICAL BEAM - B-2 L= 20'-9" W= 175 psf * $(\frac{3.0'+4.5'}{2})$ = 656 plf BEAM WT SAY = 44 700 pl M= $\frac{Wl^2}{8}$ = $\frac{.7 * 20.75^2}{8}$ = 37.7 'k $W = Wl = .7 * 20.75 = 14.53^{k}$ $V = W(\frac{1}{2}) = .7 * \frac{20.75}{2} = 7.27^{k}$ From Huow. M IN BEAM CHART $W = 10 \times 33$ $M_R = 50^{1/k}$. $\Delta_{\text{approx}} = \frac{0.98 \times 14.53}{28} = 0.51^{11} = \frac{L}{488}$ $L_{\text{H}} = 20.75$ Single Plate Shear Connection, TBL X-A ps 4-54 $3/8' R \times 6'' \times 6'' \times 17/8'' Long Glutted Holes$ (steel) $V_{2110W} = 8.2^k \times V = 7.27^k$ REF PCT 3" Ev. Tol 620.7 (a.v. Vu=7.27 k * 1.7 = 12.4 k < + Vc = 12.2 k/stvo 2-3/4" Stvos = 24.4 k WALL FACE PC= 3/6" × 6" × 8" W 2-3/4" + 6" LONG Stross | HOUSTON, TX
PROJECT | Grus | | 392 -00
JOB NO.0101 | |-------------------------|------------------|--------------------|------------------------| | 3 RUMBS @ 2000-5300 GPM | | | 2 of 7
SHEET | | CEO
DESIGNED | 11-14-95
DATE | CHECKED
NYYY () | (1-21-95
DATE | ## VALVE VAULT VAULI • DESIGN FOR CRITICAL BEAM: B-4 $$L = 20! - 9"$$ $W = 175 \text{ psf} * \frac{(5.17' + 5.5')}{2} = 934$ $EAM \text{ WT} = \frac{56}{990} \text{ p/f}$ $M = \frac{0.99 * 20.75^2}{8} = 53.3 \text{ k}$ $W = 0.99 * 20.75 = 20.6 \text{ k}$ $V = 0.99 * 20.75 = 10.3 \text{ k}$. CHOOSE $$W14 \times 38$$ $M_{R} = 54.25^{K}$. $M_{R} = 20.75^{C}$ $$\Delta_{\text{approx}} = \frac{0.70 \times 20.6}{43} = 0.34'' = L$$ SINGLE PLATE SHEAR CONNECTION TOL X-B 16 4-54 3/6" PL × 6×9 W/ 13/16 × 17/8 LONG SLOTTED HOLES FOR 3-3/4" & A325 BOLTS (Sieel Vallow = 16.3k > V=10.3k REF. PCI 3RD ED. TBL 620.7 $V_u = 10.3 \times 1.7 = 17.5^k \ll 4V_c = 3 \times 12.2 = 36.6^k$ WALL FACE PE= 3/8" × 6×9 W 3-3/4" + × 6" LONG STUDS | HOUSTON, TX STDS | | | 3921-00 | |--------------------------|----------|---------|-------------| | PROJECT | | | JOB NO.0101 | | 3 PUMPS @
SUBJECT LOW | 3 of 7 | | | | CEO | 11-14-95 | CHECKED | 11-27-95 | | DESIGNED | DATE | | DATE | PIT WALLS REF: BOR, EM NO 27 END PANEL = 22-1" x 14'-6" $$a/b = \frac{22.08}{2 \times 14.5} = 0.75$$ $Rb^{2} = C.1(H.5)^{2} = 21.03 \cdot k$ Rb = 1.45'k $Pbb^{2} = 1.45(H.5)^{2} = 304.9 \cdot k$ Pbb = 1.45(H.5) = 21.02'k $$dv = 16-2-1/2 = 13.5$$ " $F_v = 0.182$ $d\mu = 16-3-1/2 = 12.5$ " $F_{\mu} = 0.156$ CODE: sect 10.5.2 $K_{H}^{+} = Mu/F_{H} = 90 \quad \ell_{H}^{+} = 0.0017 \quad A_{SMW}^{+} = \ell_{H}bd_{H} \times 4/3 = 0.53 \quad \#60 \quad 14 \quad \#1/1F$ $K_{H}^{-} = 185 \quad \ell_{H}^{-} = 0.0035 \quad A_{SH}^{-} = 0.58 \quad \#60 \quad 7'' \quad \#0F0 \quad \#0.0047)$ $K_{V}^{+} = Mu/F_{V} = 4/6 \quad \ell_{V}^{+} = 0.0013 \quad A_{SVMW}^{+} \quad \ell_{V}^{+} b \times d_{V} = 0.53 \quad \#60 \quad 14'' \quad Vert7F$ $K_{V}^{-} = 190 \quad \ell_{V}^{-} = 0.0036 \quad A_{SV}^{-} = 0.58 \quad \#607'' \quad Vert7F$ $\ell_{Mm}^{-} = 0.0033 \quad A_{SV}^{-} = 0.53 \text{ in}^{2} \quad (0.76) \quad \text{Sulls of}$ $\ell_{Mm}^{-} = 0.0033 \quad A_{SV}^{-} = 0.50 \text{ in}^{2}$ | Hauston, TX
PROJECT | 3921-00
JOB NO. 1010 | | | |---------------------------|-------------------------|---------|------------------| | 3 RMS @ 20
SUBJECT LOW | 50f7
SHEET | | | | CEO
DESIGNED | 11-16-95
DATE | CHECKED | //-27-95
DATE | ## BRACKET FROM WET WELL WALL: CONSIDER 5' WIDE BASE SLAB & 5'-0" OF WALLS FROM VAULT SUPPORTED ON TO BRACKET. $$R_{WALL} = 0.150 \times 13' \times 5 \times 1.33 = -17.29$$ $W = 2^{1} - 6''$ SLAB = 375 psf $$M_{ANE} = 0.375 * \frac{2.03^2}{2} = 1.50^{1/4} / 4$$ $$1.875 * 2.83 = 5.31$$ $$6.81^{1/4} / 4$$ $$M_{MAX} = 0.375 \times \frac{4.66^{3}}{2} = 4.07 \, \frac{1}{4}$$ $$1.875 \times 4.66 = 8.74 \, \frac{1}{4}$$ $$12.81 \, \frac{1}{4} \times 1.7 = 21.78 \, \frac{1}{4}$$ $$M_{VL} = 17.29 \times 4.6 = 79.5 \%$$ $2.6 \times 46^{2}/2 = 27.5 \%$ | Houste
PROJECT | 3921,00
JOB NO.0/g/ | | | |-----------------------|-------------------------|---------|------| | 3 Pumps
SUBJECT LO | SHEET 7 | | | | NMP
DESIGNED | 11-28-95
DATE 5-3-96 | CHECKED | DATE | | | | | | Pef: PCA - "Samplified Design", Shear Wall, pg 6-13. Mu = 1.4 × 107 = 150 lk γ Mu = 1.7 × 382.7 = 651 lk γ Controls ΦΜη = Φ [0.5 Asy fy Lw (1+ Pa) (1- Gw)] Where Φ = 0.9 Ast = #60(2EF = 0.44×2×13 = 11.44 in Lw = 13×12 = 156 h = 24", wall thickness Pu = 6 C = ω + ω Zω + 0.85 β, μ = 0.85 for fillow = 0.046 2×0.046 + 0.722 w = (Ast.) fy = 0.057 = 11.44×60 ΦΜη = 0.90×0.5×11.44×60×156×0.94/12 = 3774 lk >> 651 lk Base 5/ab: Net 4p/ift = 15.5 x 0.0624 = 0.967 ksf - 2.50× 0.150 = 0.967 Ref: BOR EM. - Hinged (thru dwls). p= .0. $\beta b = 11.4$ $\beta b^2 = 221.$ MX = 0,0695XZZ1,=15,41k Mux = 26,21/2 mx = 0.0263x221. = 5.8 Mux= 9,9 Muy = 33.7 My = 0.0898 x.221.=19.8 my = 0.0473 x221.=10.51k Muy=17,9.16 9min = 28-3-2-23 Amin = 0.0018 Knx = 50 = 19 (± 10% Distr.) at wall Bott. | Hous to PROJECT | 3921-00
JOB NO.0/0/ | | | |-----------------|-------------------------|---------|------| | 3 Pumbs | 7077 | | | | WMP
DESIGNED | 11-28-95
DATE 5-3-96 | CHECKED | DATE | Value Pit- Lide walls: Ref: BOR, EM, NO. 27 a/6= 19/14,5=1.31 = 1.00 -100 psf \$6=0.1×14.5=1.5 pb2=0.1×14.52=21. \$6=1.45×14.5=21. 1450= p & 62 1.45 × 14.52 = 305 M= 0.2949x21 +.0662x305 = 26.4 14/4 Mux = 44.9 14/4 Mx = 0,0324X2/+0.0077X305 = 3.0 * M= 0.2949×21+0.1157×305 = 41.5/k Muy = 70.5 1/4. M=0.0324X240.0172X305=5.916 = 10.0 HH $\frac{t=24''}{dv} = \frac{24-32-2''=20.0}{dv} = \frac{24-32-2''=20.0}{F=0.44}$ #607 "e Inters Knx = 112, A= 0.0021 PBH = 0.50 in/A-#6814 Cont Knx = 13, P= 0.0015 A3H=0.361NA #GC.7 Vert, dw/s R=0.0030 A= = 0.76/1/4 (x) Khy = 160 Kny = 23 Pt = 0.0015 At = 0.38 m/ff 1 # 6 @ 14 "Vert IF. Use this. (*) Consider Vert. Edges Hinged: 0/6= 19 = 0.66 My = 0.2135×21+0.087/×305=31.0/4/4 Mu = 52.8/4/4 Kny=120 P=0.0023 A= 0.58in2/4 #609/10Fdw/s. 2.73.7× $\Delta w_{8} = \frac{5 \times 12.93 \times (23.5) \times 1788}{384 \times 29 \times 10^{3} \times 82.8} = 1.57^{11} = \frac{1}{180} \text{ ok}$ $\Delta w_{8} = \frac{5 \times 12.93 \times (23.5 \times 12)^{3}}{384 \times 29 \times 10^{3} \times 170} = 0.77^{11} = \frac{1}{100} \text{ ok}$ $= \frac{1}{366}$ Fixed b = 100 b = 9.67 b = 9.67 b = 9.67 b = 9.4 b = 100 b = 9.67 b = 9.4 b = 9.67 b = 9.4 | | HOUSTON, TX STDS | 3921-00
JOB NO ONO | |--|--|-------------------------| | CONSOER TOWNSEND ENVIRODINE ENGINEERS, INC. | 4 Pumps- 500-2600 GPM
SUBJECT | 30F4
SHEET | | EVANOSIAE EVONVEERS, INC. | DESIGNED DATE CHECKED | DATE | | Mx = 0.2949 X9.4 + 0.06 | 71.0-1 | · 14,9 14/4 | | my = 0.0324x9.4+0.007
my = 0.2949 x 9.4+0.1157 | 1×90,4 = 14.2 m. | = 1.7
= 24, 2 14/4 | | ny = 0.0324 x4,4 +0.0172 | x90,4=1,9 | 3,2/k/A- | | 15 = 2/3: P= 0.0041
KH = 24. Print 0.0033
15 = 269. 0.0052 | A34 2 0.43 #50 12 HOF
= 0.34 #5012 | e Corner | | Kin = 269 0.0052 | = 0.34
#5012
Asv = 0.59 #506" | HEF-
OF DWLs | | Kit = 36, Pmin 0.0033 | = 0.38 #5@1Z VI | | | Base 5/a be | | - · · | | Base 5/a bes DEAD LOADS: 12 walls | 2×14.5×8.67×0.150=3 | 7.7 K | | 16"Base | 1 x 23,5 x 8.67 x 0,150 = 36
=166 14,5 x 25,5 x 0,200 = 7 | 7.6
4.0 | | 2.0 Ffe. 501/wf. 2 | X2 X /6.5 X 10.0 X0.06 = = = = = = = = = = = = = = = = = = = | 12.3 K | | 14 | 12 x 23.5 x /0.0x 0.06 = 2 | 9.6
8.2 ₁ | | 2/plift = 14.5x 25.5X1 | 10x 0.0624 = 230.7 Kg | 0.1k | | F. Sagamol Elpliff | = 240.1/230,7 = 1,04 | / | | Resisting Force requ | ured = 1,25×230,7 = 28 | 8.4ª | | | _ 7 6 | J71. 1 | | by Wall-Brack | to witwell 4.2 to Each | wall- | | Assume wet-well wall f | = 22011 | ار ر | | Mall backet Leu
MBr = 24,2×5,53'= | = 220"
gth = 13.0+12.52 -1 | 72.5 = 5.53 | | M 1.74121/- 50 | . /k | | | Wallbracket to 12" Ref: PCA "Surplified | W/#6012 EFEW Reinf | | | PM= \$ To.5 As. L. | Lills Pu - 11. 17 | pg 6-13. | | | lw(1+ Pu. Astfy)(1- [w)] | | | | | | _=!.. | | PROJECT | PN, Tx | | 3921-20
JOB NO. 0/0/ | |---|---------------------------|-----------------|-----------------|-------------------------| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SUBJECT | | 2500 GFM
EA: | 40F4 | | TOWALLS, IAC. | NMP
DESIGNED | 12-4-95
DATE | CHECKED | DATE | | Pa=0
A3x = 0.44×ZX8 = 7.04 | 1-2 | | | | | 1 = 2/0" - 1011" | iu. | | | | | Lw = 8!8" = 104"
W = Ast fy = 7.04 X a
lwh fe' 104 x 12 x | 60 - 00 | | | | | lwh fe' 104 x12 x | 4 20,0 | 85 | | | | lw 2w+0.85p, | B=0.85# | or fe=40 | 2000 | | | 0.085 2 0.09 | 5_ | | | | | \$Mn = 0.90[0.5×7.04×60] | 210420.90 | 57= 149 | o lk >> N | 1. = 228th | | Do do Los | | | <u></u> | | | BASE SLAB: Net 2/1/4 | | (10'- 1,35 | 3KO,150 = 0 | 0,420kf | | $a/b = \frac{24}{2\times 1}$ | 7 | | | | | Hinged PE=0. | 1.42×14=
42×14= | 5,88
82.3 | ./ | | | 1 6=141 m | 680X 82. | 3=5,6 | | 9.6 K | | m, = 0.02 | 749 X 82,3
1997 V 02 3 | = 2,0 % | | 3.4
13.9 th | | m;=0.0
m;=0.0 | 540×223 | e 4.4 | | .6 | | | | | _ / | . • | | t=16" of=16-2-1-1=11.
dp=16-3-2-1=11. | 5 F = 0 | 1.156
132 | | | | a | | | 2// u- | from | | Ky = 13 Pinin = 0.001
Ky = 105 (Gro 55 Alex | <i>l)</i> . | _ | 3/f #5 | e 6 /hd/s. | | Ky = 48 | Az | 21,35m/ | 4 #50 | offer. | | Vinge 0. 3922X5.88 = 23144 | 1 Vu:3. | 924/4 1 | 450 | 28 Ew | | = 0.2/35×5,80 = 1.68/49 | V4 = 2.7 | 3612 N | 1. a 21ki | | | Km=53 Pm = 0,0018 A | 3=0,35 in | 2/f. #1 | 60/2 DW/s | from Wet | | | / | | | 1/1-// | | 6774 0 | 3904-00
108 NO. 0/00 | | | |------------------------|-------------------------|---------------------|-------| | PROJECT | 108 NO. 0∕20 | | | | STD. LIFT
SUBJECT 5 | 379710N-
20 - 2500 | 4 Pumps
GPN: Ea, | SHEET | | WMP
DESIGNED | 2-9-95
DATE | CHECKED | DATE | WET WELL: TOP SLAB = LL: Equiv. Equip. Or min = 300 psf. (No truck load Considered) -DL: 24" thick stab W/o Beams: 300 psf. Lman = 2 x 10.5=1.892 +2.0 = 22.66 /4 Mol = 0.300x 22.66/8 = 19.31k, Musl. 1.4x1.3x19.3 = 35.1 MLL = 19.31k + 7 Mil. = 1.7x1.3x19.3 = 42.60 MULT = 1.7 × 1.3 × 19.3 = 42,644 Additional Moment due to J=24-2-2-21.51 opmy: En Side of opag-F = 0.462 Pm = 168 /20,0032 Pm = 0,0033. Am= 42.6 × 4.54 = 96.716 Consider distribution over 2 Width As = 0.86 min /f Am= 48.4/49 IMm= 77.7+ 48.4 = 126, 114/A Km= 273 P= 0.0053 #8 @ BoH (1-19mg/4). A3 = 1,36 in /4 1#8 TEB Addl. @ Oping . (TA= 1.58in) #508"T&Both, Temp Reinf. VALVE VAULT: Top 5/AB: LL: Equip - Equiv. I cond or = 300 pm (No truck Load Considered). DL: 24" HACK 5/ab = 300 psf. Lmax = 24-6" A Hitzural Load from coppes Additional Load from opings 11:300 psf x Z/3,37 distribution = 17.8 Say 200psf. Wu = 1.4x1.3x300 = 546 psf ?= 1650 psf. 17x1.3x500 = 1104 psf } = 1650 psf. | _ | | . | | | |---|---|-----------------|---------|------------------------| | | PROJECT | of Hou | | 3904-00
JOB NO.0100 | | | STD. LIFT STATION - 4 EUTOPS
SUBJECT 500-2500 GPX! EA- | | | SHEET | | _ | UMP
DESIGNED | 2-10-95
DATE | CHECKED | DATE | $M_{u} = 1.65 \times 24.5^{2}/8 = 124^{16}/4$ $V_{u_{d}} = 1.65 \times (\frac{24.5}{3} - 0.5 - 1.78) = 16.5 \text{ M}$ $V_{u_{d}} = 16.5 \times 4.65 = 20.4 \text{ M} < \text{pV}_{e} = 2\times0.85.14006 \times 12\times21.5$ $V_{u_{d}} = 268 \quad P = 0.0052$ WALLS: WALLS: Consider flood Condition with soil saturated to full height, we equiv. Lateral pressure of Bops? | | | | 7/ | |-----------------|---------|-------------------|------------------------| | CTTY | OF HOU | 6701 | 3904.00
JOB NO.0/00 | | PROJECT | | | JOB NO. 0/00 | | STD LIET | 57N-4 | Pumps
GPIN EA. | 3 | | | | | SHEET | | NMP
DESIGNED | 2-10-95 | | | | DESIGNED | DATE : | CHECKED | DATE | VALUE VAULT BASE SLAB! Loads = Top Slab D/ (25.5 × 17.5 - 4×4.04×3,83) ×300 = 258 psf = 300 # DL: (25.5+2×16.5) x 6.67 x 1 x 0.150 = 132 11 5011 on 1-6 wite Ledge DL. 28.5×1.5×9.17×60 pof = 52.4 = 117 " Un = 1220psf (1.5) ufit=80 B = 25.5' A/B = 0.69 Two-way slab. B/A = 1.46 x 1.5 PCA - Rect. Tanks 90 = 0.807 × 17.5 c 0.747 Pg. 2.54. M= 78x0.247 = 19,3 14/A ×1,51x1,3 = 37,9 16/A MBK 43×0,247 = 10.614/A ×1.51×1.3 = 20.814/A Kn = 224, P= 20042 4=16-2-1=13 F=0/69 A32 0.66in2 #608 Top EW. #5 CBITEB EW. Bouyaney Check Top 3106 = 2-0" Wall ht = 6-8" Base 3/26 = 1-6 2/pliff = 62,4x10,17 = 635 pof TDL: Topslab = 258 pm Base slad = 200 707psl F.s. against floatation = 1707 = 1.11 Try 2-0" ut de Ledge (29.5 + ZX17.5) XZX9.17 X60 ZDL=749psf =5.2749 635 = 1.18 \$ 1.20. | | | | | | |---|--|----------------|-------------|-------------| | | | OF | HOUSTON | 3904-00 | | | PROJECT | | | JOB NO.0100 | | ĺ | 57D LIF. | T & 1911 | 015-474mp | s d | | | STD LIFT STATION-4PUMPS
SUBJECT 500-2500 GPM EA | | | SHEET 1 | | | NMP | 2-10-9
DATE | 75 | | | | DESIGNED | DATE | CHECKED | DATE | | HOUSTON
PROJECT 2P | STX ST | DS
STN-GZ | 3921-00
JOB NO. 0101 | |--|-----------------|--------------|-------------------------| | 3 WET & 2 DRY WEATHER PUMPS
SUBJECT SECURED SITE. | | | 10F9
SHEET | | NMP
DESIGNED | 12-4-95
DATE | CHECKED | DATE | VALUE PIT NO. 1 21-2 x 25-9 x 13-0 walls += 24". Grating FRP wt = 25 psf LIVE LOAD = 150 W= 175 psf. SUPPORT BEAMS! Beam B1. L = 24.5" $W = 175 \left(\frac{3.17 + 5.0}{3.17 + 5.0} \right) = 7/5 \text{ plf}$ $8m, W = \frac{35}{2} \text{ } W = \frac{35}{4} \text{ } W = \frac{0.75 \times 21.75}{8} = 44.3 \text{ } W = \frac{44.3 \text{ } W}{44.3 \text{ } W} W}{44.3$ $\Delta = \frac{1.19 \times 16.3}{25} = 0.78 = \frac{L}{336}$ Use, $\omega/2.34 = 80/4$. $\frac{B2}{42} = 21.9''$ Sold weld R = 8.26 Respectively. Beam BZ 4=21-9" $\frac{25}{2} = \frac{175}{42} = \frac{21-9}{9}$ $W = \frac{175}{45} = \frac{5.0+5.5}{5.0+5.5} = \frac{918}{918} = \frac{8}{15}$ $W = \frac{175}{2} = \frac{32}{32} = \frac{10.33}{2} \frac{10.33}{2}$ A = 0.99 x 20.66 = 0.65 = 1 38" PL, 516 Weld R=16,36. | | J2 · | | |---|--|----------------| | | | 1-00
0.010! | | ENGINEERS | | 0F9 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | NMP 12-4-95
DESIGNED DATE 2-3-95 CHECKED DATE | | | VALUE PIT WALLS: 2018 | "x 24-5 x 13-0 walls, 24 Threky | <u></u> | | BACKWALL: Free 7 | a/6 = 23.08/2 ×14.5 = 0.79 | | | 1=146 Fixed 2a = 23-1" | 100pef pb2=21.0
pb=21.0
pb=3050 | : | | P=100 | - \$62=305.0
- 1450psf | | | Mx = 0.1788XZI. + 0.0433X | 305 = 17.0 /4, Mux = 28.8 16/1 | 4 | | | | | | My=0.1212 X21 + 0.0584X
My=0.0242 X21+0.0139X | 305 = 20,4 = 34,6
305 = 4,7 = 8,1 | | | t=24" dy=20.0" 7 | | | | $\frac{-L-L4}{dv=21.0}$ | =0.44 | | | Bny= 72, Pj=0.0013 X13=0 | 0017, A3 = 0.40 in/4 #6014 in at Cog | HOF. | | K+ = 35. pt=0.00/3 x/3=0. | 00/7 Az= 0.40 in/4 #60/4 H | EF. | | Bnv = 18 Pv = 0.00/3 x/3=0. | 0017 A= 0.40 in /4 #6014 H
020 A= 0.50 in /4 #6017
0017 A=0.40 in /4 #6014 V | FF. | | SIDE WALL: 0/6= 19.3 | 3/14.5=1.33 21.00- | | | Free 1 = 0.2949 | 9×21+0.0662×305=26.4 Mm= | 44,8 | | 1=14,5) my=0.032 | 14x21+0.0011x305=3.0 =. | 5.1
10.5 | | 7=14,5) - Fixed (+) M= 0.294 | 1/x1+ 0.0172x305= 5.9 = 1 | 0.0 | | t=24" du = 20,0" Fy=0.40 | 7 2027 1 | | | du=2/10 F, 20144 | | | | Knx = 112. PH = 0.002/X/3 Knx = 25 PH=P=0.0013X/3 | A3= 0.6710 #607 HOF @ Corne
A3= 0.40102 #6014 EF EW | 'rs | | Kny = 160 P = 0,0030 X/3 | Asy 0.72 in #687 VOF Juls. | (*). | | HOUS FON | 1, 7 5705 | 3921-00
JOB NO.0/1 | |----------------------|---------------------------------|-----------------------| | 3 WET & 2
SUBJECT | DRY WEATHER PUM | P 3 OF 9
SHEET | | NMP | 12-6-95
DATE 4-30-96 CHECKED | DATE | (*) Consider Vertical Edges hinged = $a_{16} = \frac{19.33}{2\times14.5} = 0.67$ $M_{5} = 0.2/35\times2/+0.087/\times305 = 31 Mp$ 0.2/$ Base Slab: Consider Structure right of Exp. Soint: Deadloads; 24"Walls: ZX20.67X13.0X2X0.160=161.2k 1X21.75X13.0X2X0.150=84.8 2-6" Base slab: 24.67X33,75X2.5X0.15D=312.2 Consider 4-0/Footing projection Soil. Wt. 2 X24.67X (2.5 X 4.0 X0.120 = 296.0k 1 X 25.75 X 12.5 X 4.0 X 0.120 = 154.5 2/plift: 24.67X 33.75X 15.5 X0.062 = 800.1 & 450.5 558.7 + 450.5 = 507.5 + 300.3 = 807.8 > Fu = 800.1/2 ZW = 1008.7 = 1,26 ok = Base 5/ab area: 56.6 + 56.6 f2 Dead loads: 2x5.84x4=103.3 f2 24,17 Top 5/ab: 56.6 x2x0.150=17.0k 24 Walls: ZX1/X5.84X2 x0.150=19.3k 5011: 2 x 5.84 x 4 x 12,5 x 0.120 = 4 = 75.0. 2/plift = 103.3×15.5×0.062= 99.3 K U5=70,1k | _ | | | | | |---|-------------------|------------------------|---------|------| | | HOUSTO
PROJECT | 3921-00
JOB NO.0/0/ | | | | | 3 Wef & SUBJECT | OS 4 OF 9
SHEET | | | | | JIM D
DESIGNED | 12-6-95
DATE 4-3096 | CHECKED | DATE | $$\frac{ZW_{c}}{1.10} + \frac{ZW_{d}}{1.50} = \frac{(558.2+75.0)}{1.10} + \frac{(450.5+70.1)}{1.50}$$ $$= 575.6 + 347.1$$ $$= 922.7 = 276 > 276 =
800.1+99.3 = 899.4$$ $$\overline{ZW} = \frac{1153.8}{274} = 1.28$$ $$\overline{ZF} = 899.4 = 1.28$$ I Shear Capocity of Dwl-bars in Base stab: $a_1 z' c' c'$. $\phi V_c = 25.85 k$ $or \phi V_c = \phi V_c' c' c' c' c' c' c'$ $\phi V_c' = 24.52 k$ $c_1 = 1.0$ $c_2 = 1.0$ $c_3 = 1$ $c_4 = 1.0$ $c_4 = 1.0$ $c_5 = 1.0$ $c_6 | _ | | | | | | |---|----------------------------|-------------------|-----------|---------|------------------------| | | -lousto
Project | | | TO5 | 3921-00-
JOB NOO/0/ | | | 3 WET & Z DRY WEATHER Purm | | | SHEET | | | | DESIGNED | 12-6-
DATE 5-3 | 95
-96 | CHECKED | DATE | Base Slab 046 = 23.08 = 0.60 (0.75 0.625 Net ziplift = 0.062×15.5 = 0.961 -0.150×2.5 = 0.375 $p_{b}^{2} = 11.33$ $p_{b}^{2} = 219$ 0.58641 M=0.0695 x219. = 15.2, Mux = 25.8/k mx = 0.0274 x 719, = 6,0 = 10,2 m= = 0.0898 × 219. = 19.7 m==0.0473 × 219. = 10.4 *≐ 33,5* =17.7 / VHING-(Max) VII.33 = 4,39 4/4. Vu= 7.464/4 | _ | | | | | |---|-----------------------------|------------------|---------|-------------------------| | | PROJECT LP. SSC PUMP STN-GZ | | | 3921-00
JOB NO. 0101 | | i | 3We++2
SUBJECT | 6 0F 9
SHEET | | | | | NMP
DESIGNED | /2-//-95
DATE | CHECKED | DATE | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. VALUE PIT NO.2: 14-0x18-10x8-8 Walls 1-0"thick Grating FRP Wt. = 25 psf Live Load = 150 psf W= 175 psi Support beam: W= 175 (4,33+2,25) = 575 plf Bm wf = 25 600 pf. L= 16-10" M= 0.6×16.83/8=21.21 V=0.6x 8.42 = 5.05 k W8X24 ln=16.83 W=101/4 MR= 33,5 th 21se W/2-34" & single 3th Conn. W/516 weld R= 8.2k $\Delta = \frac{0.89 \times 10.1}{19} = 0.47 = \frac{1}{426}$ End wall: Ref: 215 Bureau of Reclamation, EM NO. 27. a/6 = 17.83 - 0.92 21.00 -100pcf \$6=1,0 7,62 = 9,4 -B=967 \$ 6 = 9,4 B 62 = 90.4. M= 0.2613×9.4 + 0.0644×90.4=8.3/k/4 M= 0.1008×9.4 + 0.0276×90.4=3.4 M= 20.2043×9.4 + 0.0845×90.4=9.6 Mt-0.0243 x9.4+ 0.0159 x 90.4=1,7 t=12" dy=9.5" Fy=0.09 dy=8.5" Fy=0.07 Mu = 14,1 /k/f-= 5.9 4/4-= 16.3 = 2,8 ``` CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. ``` Pmx = 201. P= 0-0039 Kmy = 84. Print 0.0018 Kmy = 181. P =0.0035 Prin 0.00/8 A=0.0035X(CX9.5 = 0,40 Side Wolls: of = 13.5/9,67=1.4 = 1.00. Free FIXEd / Q=13.50 p=100) Mx = 0.2949×9.4+0.0662×90.4 = 8.814/4 Mx = 0.0324×9.4+0.0077×90.4 = 1.0 M= = 0.2949 x 9.4 + 0.1157 x 90.4, = 13.2 My = 0.0324 x 9, 4 + 0.0172 x 90-4 = 1,9 Mu= 14,9 144 = 1,7/4/4 = 2Z.5 = 3.2 Kny = 213. P=0.0041 Az=0.42in2 Kt = 24. Pmin=0.0018 A= 0.26 2014 Kmy = 250 f= 0.0049 A= 0.56 m2/f Kny - 36, P=0.0018 A3 0,26 12/4- #506@ Corner #5 elt HEF. #506 dwls OF. #50/2 VEF. Buoyancy Check: Consider Structure, Left of Exp. 41: Dead Love 5: Walk , 2x14x 8.67 X0.150 = 36.4 6 3-0" Ftg; 24" Bose 5/ab; 17.0x24.83' x2x0.150-126.66 501/: 2 × 3.0 × 8.17 × 17.0 × 0.120 = 100, Wc = 184.96 1 × 3.0 × 8.17 × 16.83 × 0.120 = 49.5 W,=149.5 K Upliff=17.0×24.83×10.61×0.062=279.2k=Fu We/1.10+Ws/1.50=267.8 / Fu DW=-11.4k | _ | | | | ~~ | |---|------------------|---------|------------------|------------------------| | | HOUS to | | | 392/.00
JOB NO.0/0/ | | | Wef-f
SUBJECT | Z Dry u | veather
Dumps | 8 0F 9
SHEET | | | DESIGNED | ., | | DATE | | HOUSTO
PROJECT LP | NITY ST. | DS
IMP STN HZ | 3921-00
JOB NO 0/0/ | |----------------------|-------------------------|------------------|------------------------| | SWEFF 22
SUBJECT |)ry weather | 94mps | 9 of 9
SHEET | | VMP
DESIGNED | 12.14-95
DATE 5-3.24 | CHECKED | DATE | Consider Combined Landing and Shear of doweis: $Mu = V_u \times a = 0.50' \times 7.37 = 3.69'' \text{lk}$ $f_{St} = \frac{3.69}{0.7854 \times 0.53} = 37.59 \text{ ks}'$ $f_{Sv} = \frac{7.37 \times 60}{27.1} = 16.32 \text{ ks}' \text{ } 60 \text{ ks}' \text{ } 160 \text{$ Base Slab: 0/6 = 17.83 : 0.66 Net Uplit = 10×62.4 = 624 | -1,33×150 =-200 p=f | 06=2.07 524 p=f / Hinger Net Up 11 " 20 = 17.83 pb = 7.07 \$62= 95.5 Fixed 6= 13.5 t= 24 d-22-3-6=18.5 F=0.342 Mx = 0.0695×95.6 = 6.64 Mu= 11.34/6- Kn= 23.) mt=0.0274×95.5 = 2.62 =4.4 Mi = 0.0898×95.5 = 8.58 = 14,6 MJ -010473 × 95,5 = 4.52 = 7.7 V = 0.3874×7.07 = 2.74 4/4 Vu= 4.664/for #60127 Ed #GCZTEW | · | | -60 - | |--|---|---------------------------------------| | | CITY OF HOUSTON | 3904-00
JOB NO.010/ | | ETE ENGINEERS | LIFT STN WIO VALUE VAULT
SUBJECT ZWET & ZDRY WR.PUMP | 12 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | NMP 11-1-94 JAM CHECKED | 11-7-94
DATE | | WET WELL: TOP SLAB! | (sht. c3 | 1) | | Band 1: 5= 3:034 } = 3:10" | ick Slab; | | | W = DL ! W, = 300 F | _ , | 100 | | W2 = 30 ps | , | (+ wo! - | | $W_3 = 300 \times 10^{-3}$ | |] | | 12: 300psfx | 8.58 = 2574 = | WLL | | | Mu= 90,2x13', | = //73, | | 6-10 3-10 4 8 3-10 6-10 | $-57 \times 6.5' =$ | - 37/, | | 26/0 | A.m | -1531
-765 | | 14 33.5 × 1.7 = 57.0 k 33. | 5k -2.23x 1.17' = | - 31 | | WHO 16.8 2 = 23 k x 1.4. 32.2 6.2 | 8h)=23h J=21 (Mu=1 | 570k | | 7/2.89.24 /d | V = 3.83X0.44/ | · · · · · · · · · · · · · · · · · · · | | \$Vc=0.85x2 4000 x46x2 | / /n: 33/- (4: | (39) | | , | 1=103.94 P= 0.0067 (C
Az= 6.47 in 1 | 250-2 | | Band 2: 6=21" F= | 11 #8 BoH @ 4 | 1/4/c | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.14 | | | | | | | $30pef \times 2.5 = 6$ | 0.79 } 0.87×1.4 .1.224/4 | | | WIL = 300 psf x 5,12 = 1 | 1.54 x 1.7 = 2,614/4 | | | Mi 3.83x 23.12/8 = 256 | k (333) War 3,83 K/A | 2-76 | | Bn=22E. /2 0,0044 | (0.0057) Vu= 42.4 Vu= | 35./ | | A3= 2.8 in 2 4 #8 @ 8
 | ge Bott.) | <u>.</u> | | CTE ENGINEERS | |---| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | | PROJECT OF | 3904-00-
JOB NO.0101 | | | |-----------------|-------------------------|-----|-----------------| | AFT STATE | SHEET /3 | | | | NMP
DESIGNED | 11:-2-94
DATE | JAM | 11-7-94
DATE | Band 3: l= 4.62 } 6.55 W= DL = 300 ×1.4 = 0.423 = 0.93 / H-M= 0.93×6.55/6 = 516/4 d = 24-3-1 = 20in F20.40 Amia = 0.0033×240=0.8 inc #8012 Bott. Trans VALUE PADS: A = 16-1 = 15-1 $m = \frac{A}{B} = 0.82$ $B = 19^{1}5$ = 18-5 = 18-5 W= 12" 5/ab = 150 psf. x1.4 = 7/0 psf. 11. (Notruck). = 150 psf. x1.7 = 255 psf.) W=300psf. Wa=465 psf. Mus=0.056 X 0.465 X 15.08 = 6 14/4- Kn= 94, Mus = 0.023 x 0.465 x 18.42 = 3.616/4. d= 12-3-1=8" F=0.064 Pum: 0.0033 J= 12-4-1=7" ==0.049 Amn=0.3/in. #50/2 Bott. Ell. VA = 0.465 X 0.71 X 15.08 = 2.494/4 (max) Gr. Well Loads: platform = 2.49/1.55 = 1.6/4/4 12" wall 2.5 x 0.150 = 0.38 1.994/A Brg pressure: 1.99 ksf (30 ksfallow. | | | -62- | |--|---|-------------------------------------| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | PROJECT Lift Station W/ Vaults SUBJECT 3 Wet + 2 Dry Primps NMP 1-18-95 DESIGNED DATE CHECKED | } | | NOTE: We twell top star | 5 Similar to Lift Stn. | w/o Valu | | VALVE VAULT Top 3/ab: Assume 24 Loads: 24"slab | 4 thick 5/46: | | | Larger Vault Hatch @ 3.
L= 21/9" L1: @ 300 p | SF = 300.4 X1.7 = | 510 1 | | M= 1.04×21.75/8 = 61.5
Vu=1.04 (21.75_1.75)=9.3
K= 139 B | 5 7/4 < \$Vc = 2/4000 | X/2XZ/X0.8. | | En= 139 P= 0.0027 Smaller Vault L= 17-10" | Min # 50.85 Top E. | Horn (0.79)
(0.90 in/h)
w aud | | Mu= 1.04 × 17.83/8 = U/ 7 | 16/f- Bott For
5 4/f- \ \$16:27.14/f-
in=0.0033 Az = 0.832 | rusveose. | | WALLES | | · | | max = 11-0 } = 12-0 p= 100 psf 80 psf /4 (5aturated) | $R_{01} = \frac{100}{1060} = 0.10$ $R_{01} = \frac{100}{1060} \times 12 = 6.$ $R_{01} = 0.65 \times 6.96, R_{70p} = 0.35$ $R_{01} = 4.52 \times 8.$ | 0.081
96 k
5x6.96
444 | | B _n =225 P= 0.0043 Ag=0.46in | $M_{max} = \frac{6.96 \times 12}{7.82} = 10.7 \text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.82} = 10.7
\text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.82} = 10.7 \text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.62} = 10.7 \text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.62} = 10.7 \text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.62} = 10.7 \text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.62} = 10.7 \text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.62} = 10.7 \text{ M}_{1.82}$ $M_{max} = \frac{6.96 \times 12}{7.62} = 10.7 \text{ M}_{1.82}$ | | PROJECT OF HOUSTON 390 S JOB NO. 0/0/ Lift Startion W/Vaults SUBJECT BWet + 2 Dry Pumps SHEET 1-18-95 DATE Des. Engr-Verifu t = 18"base slab d= 18-2-1 = 15" F=0.728 CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. BASE SIAB: Loads: Top Slab DL 300 psf Walls 22.75" 20.50' 63.75 x / 1 x 0.180 = 105.2 = 225 psf Consider Water Table to be rup to Finished Grade har - Varify for 100 year flood level of Griffical. 11-0 } = 13-6" ZIPliff = 62.4x 13.5 = 842 psf PL: 24 Top Slab . 1-6 Base s/9b = 225 Backfill wit or footing, say 1-owide. 65.75 X/X 12 X 0.06 = 47.36 Weg = 47.3 = 100 pcf ZWDL: 850 psf x 2pliff=842psf. Soil pressure = U=850 W= 300 Topslab X1.4 = 420 300 11 malls 100 soil wf W=925 psf Wu = 1385 ps Miz 1.385 x 21.75/8 = 81.9 14/4 Km= 364, P= 0.0072 VN = 1.385 (21.75-1.25)= 13.3 /ff (OV = 0.86xZ \ 1/000 x/2 x 15' = 19.35 4/4 A3= 1,295 m/f #8@8 Top | | | | | -64 - | |---|--------------------|-----------------------|----------------|--------------| | | PROJECT 7 | Y OF HOD | YSTON | 390400 | | ENGINEERS | | tation w
Wet + 2 d | | JÓB NO.0/0/ | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | | 1-18-95 | | SHEET | | 0 1/ 2 1/ / | DESIGNED | DATE | CHECKED | DATE | | Consider Base Slab as
a se b = 21.75' | Two- | way | 1 1/01 | / | | $m^{+} = 27.73$ | m=1100 | 1. Hing | red all Sic | ves. | | M= 0.036× 1.39× 21. | 75 = 23.
2033 : | 7 16/4
A z 10 | Eq. 2 | | | min | | # 7012 | TEW | | | | | # 50 17 | | | | Assume F.S. agamstupli | 1/2-120 | • | _ | | | Net upliff = (1.2x)
a. Consider base =/2b
the wetwell shalf | 942- 850 |)=160 p. | s f | _ | | a. Consider base Llab | to res | ist by C | antileve | y off | | The Wetwell Shalf | 2, | | | | | My = 1.7x D.160x 22. | | · · | | | | F= 0.225, Kn = 306 | r | 0:006 | w | | | 1 Paneila al-111A | A3=1 | 108 m² | #808"d | us. | | b. Consider net upliff Si
Slab equally | hared b | by 10p | slab avo | 1 base | | : Mu= 34.5 1k/f | | | | , | | 15n = 153 P= 0.0 | ב ב חוד | 1 | | ^ | | | 095 | H3 = 0.5 | | ; D | | Me this | | nof | Bot. Dw | /s from | | /dee | , | | · | | | C. Increase wall thickness | tw=16 | base 3 | 5/ab - t = 0 | 20 | | and Base Slab proje | ctroa | 2-0". | 4 | | | C. Increase wall thickness and Base Slab proje Thu = 20 = 15 24/1 | H = 62, | 4×15 = 93 | 36 psf / | | | DL: TOP 5/a6 2. | | | | | | 805e 5/ab = 3 | 300 ps | - | | , | | Walls = 20,50 } = 0
20,50 } = 0
23.42 | 661/21 | / | = 141.44 | <u>ن</u> | | 23.42 | UI: TL 1/ | <i>- در برز بربر</i> | 20.5 × 23. | 12 | | | | | = 294 p | | Soil:W+: 20,50 IDL = Top slab = 300 psf Base slob= 300 5011 = 239 1133psf F.5 = 1/33 = 1.21 Small Value Vault: DL :24 Top slab = 300 ps p IDL = 7/1 psf F.S. = -7/1 = 1.12 Assume 1-0 Base Slab extension: Wf of Soll: 12.50 12.50 20.83 45.83 # x9,17 x 1.0 x 60 = 25,2k =107 psf ZDL = 818 psf F5 = 818 = 1.29 > 1.20. | - | | | _ | | |---|---|-----------------|-------------------|-------------------------| | | 1 C1TY | OF HOU | STON ! | 3904-00 | | | PROJECT | | | 3904-00
JOB NO. 0/0/ | | | Lift Station W/Vacets
SUBJECT TWEF + 2 dry Pumps | | | 18 | | | SUBJECT 700 | 1eff Lay | 4 Jumps | SHEET | | | ISMP | 1-19-95
DATE | ر '' ا | | | | DESIGNED | DATE | CHECKED | DATE | Jase Slab Loads: Top Slab = 300 psf walls = 186 " Soil = 107 " LL- Top Slab = 300 psf x 1.7 = 510 W=893 psf W=1340psf Consider Two-way slab; hinged all edges. A = 13-6" B = 17!10" M=0.76 My = 0.061 x 1.34 x 13.5 = 14.9 M/A- Ky = 88 Mus = 0.019 x 1.34 x 17.83 = 8.1 M/A d=16-2-1 = 13" F=0.169 frain = 0.0033 A3 = 0.51 m². #5087 FW (0.47) #5012 Both EW Hinged $a/b = \frac{19.33}{2 \times 19.5} = 0.67 = 0.75$ $b=19.5 \text{ M}_{+}^{+} = 0.12/7 \times 2/4 \cdot 0337 \times 305 = 12.8^{16} \text{ M}_{u} = 2/.8^{16} \text{ M}_{u} = 2/.8^{16} \text{ M}_{u} = 0.2/34 \times 2/4 \cdot 0.087/\times 305 = 3/.05 = 52.8$ $2\alpha = 19-33 \text{ M}_{+}^{+} = 0.0304 \times 2/4 \cdot 0.0168 \times 305 = 5.8 = 9.8$ $\chi_{-}^{-} = 19.33 \text{ M}_{-}^{-} = 0.0013 \times 1.33 = 0.0017 \text{ A}_{-}^{-} = 0.40 \text{ $46.614} 46.6 NOTE: See sht, 69a for additional Calculations for Bouyancy Check. Base Slab: Net ziplifi = 0.062×15.5 = 0.967 1 -2.50×0.150=0.375 p= 0,592 1 Ksf. 2a=78.75 pb=11.6 $b^2 = 229$. $a/b' = \frac{28.75}{2\times19.67} = 0.73 \approx 0.75$ M= 0.0695 x 229 = 15.9 1/4 Mu= 27.01/4 K= 42. Mt = 0.0274 x 229 = 6-31/4 =10.7 Mx = 0.0274 x229 = 6-3/4/4 M. = 0.0898 x 229 = 20.6 14/4 My = 0.0898 x 229 = 20.6 llff = 35.0 My = 0.0473 x 229 = 10.8 llff Muy 18.4 llf Kny 54 x t = 30" dr = dp = 30-3-1-1= 25.5" F= 0.650 Pmin = 0.0018 A3mm = 0.0018×12×30=0.65 m²/A #6@8"TEW hinge max Vu= 7.50 4/4/4 # 6012 BEW W/ #607" Vu= 7.50 4/4/ pV= 25.85k Soilwf: 2X4X5:14X12.5X0.120c 61.7k = 96.6k 2/pliff: 111.1X15.5X0.062 = 106.8k (624196.6) + (480.5+61.7) 1.10 1.50 6550+361.5 = 1016.5 = 1025.5 IW=1262,8 K IFL=1025.5 K NOTE: 1. to Conform w/ COH Des. MNL flow tation F.S., the Dead wt. Is short by 9.0 kips. Insignificant. | PROJECT | DN, TX : | STDS | 3921-00
10/00 80L | |----------|-----------------|------------|----------------------| | AWet + | ZDryW | eother fum | SHEET OF 9 | | DESIGNED | 12-8-95
DATE | CHECKED | DATE | REF: PCI, Design Hand Book: 4th Ed. Table 6,20.8 NOTE: This Table can be rised to evaluate, Shear capacity of 1"DIA dowel bor in Expansion joint TYPE-E3. 1"Dia at 12"9c in walls and base Slab. It shear Capacity in Base 5/ab: $\frac{\partial V_c}{\partial V_c} = \frac{25.85k_{--}}{25.85k_{--}} \quad \text{Controls}$ or $\oint V_c = \oint V_c' C_w C_t C_c$ where $\oint V_c' = 27.94k'$; de=14'' $= 27.94k \quad C_w = 1. \quad n_s = 1.$ $c_t = 1.0 \quad h > 71.3de$ $\oint V_c = 27.1k \quad G_c = 1.0 \quad d_c > d_c$ Wall dowels: |"\$ @ 12" Vu = 11.24 k M = 11.24 x 0.5 = 5.62" k 82 fy = 11.24 x60 = 24.88ks fy = 5.62 5.62 = 51.24ks = 51.14ks fs = 51.24 + 24.88 = 62.4ks Note: Walls will not get full reaction. Base 5/ab will take Some. | | | | | - 7/- | |---|--|-----------------|-------------|-------------------------| | | | fon Tx, 57 | | 397/- 00
JOB NO 010/ | | CONSOER TOWNSEND RAWROTIVE ENGINEERS INC | SOBJECT | +2 Daywed | | SHEET SHEET | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | MMP
DESIGNED | 12-8-95
DATE | CHECKED | DATE | | Wall bracket from wet | Well: | 9-3-96 | | | | Ref. PCA "Simplified & | Design! | Shear | Walls, | bg 6-13. | | \$M_n = \$ [0.5 Asty Where \$ = 0.90 | lus (1+. | Par) (| 1- C) 7 | <i>d</i> | | As = #60 | SIZ HEF | = 0.44X | ZX13=11 | 1.44 in ² | | lω= 13' : | = 156" | h= 24 w | all thickn | ress | | $P_{u} = \emptyset$ a | cross | foiat, | | | | w = Ast
Lwh | $\frac{1}{2} \frac{f'}{g} = \frac{1}{2}$ | 11.44 X | 60 = 0.0. | 46 | | | | | 4 | pr f=4000 | | les = 200 + | +0.85B, | • | • | or f=4000 | | $=\frac{0.0}{0.09}$ | 046 | = 0.057 | | | | PMn = 0.90 [0.5 × 11.44 | 2+ U. 126
X60X150 | 6 (0.94)] | - 3787 | . 1/c | | Assume wet well wall | 2-0 th | | | | | R= 13.5+2, = . | 15.50 | | · | , | | l= Cautilever | = 1/5,5 | 4 15.17 | 7-15.50 | =6.19 | | M2= 1.1X86X6.19= | 905 lk | (37.87 | 11k | | | Base Slab bracket for | om Wet | Lwell w | all: | | | L= 6,19 Cos 45°=4, | 138 | , | | ا م | | , , | - 1/. // | າ 📝 | 111 | _// | max | | | | |--|--|-------------------------| | | HOUSTON, TX, STOS PROJECT LP. SSC PUMP STN- HZ | 3921-00
JOB NO. 0101 | | CTE ENGINEERS | 4wet+2 Dry Weather Promp. | 6049 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | NMP 12-11-95 | SHEET | | VALUE PIT NO.2: 14-0×18: | | DATE | | Grafina EDD 2111 - | 75 - D | - | | Graturg
FRP Wt. = Live Load = 1 | 25 PSF,
50 PSF A | | | 1/1 - | 175 ps | | | Support beam: | 23 42 251 575 0/4 | | | 7. (<u>-/.</u> | 33 +2.25) = 575 plf | | | | 1 wf = 25
600 pf. | | | 1 = 16-10" | , | | | M=0.6×16
V=0.6×8 | 42 = 5.05 k W8X24 | 1.1103 | | W = 10.1 k | | - 11 | | | -215e W/2-34" | Linda. | | A=0.89×10.1=0.47" | 426 8 th Conn. W. R= 8.7 k | 15,6 weld | | | 112 012 4 | | | End woll: Ref: 215 Burea | • | 27. | | Free 7 16 | - 17.83
2 ×9.67 - 0.92 - 2/.00 | | | b=9.673 | p6=1.0 | | | 14- / | 12 all | | | 2 a = 17.83' p=967 | b b = 9,4 | | | p. 100 1 1 13 | B 62 = 90.4. | | | M= 0,26/3×9.4 + 0.0644×9 | 10.4=8,31k/4 Mu=14. | 1/4/4- | | mt = 0.1008 x 9.4 + 0.0276 x 9
my = 0.2043 x 9.4 + 0.0845 x 9 | 10.4 = 21/ - P. | 94/4- | | My =0.0243 x9.4 + 0.0159 x 90 | 0.4=9,6 = 16.
0.4=1,7 = 2,0 | , | | | | | | t=12" dy=9.5" Fy=0.00 | 9 | | | 44 = 8,5 FH = 0.0 | 7 | | | | | | | | | | - | |---|-------------------------------|---|------------------------| | | HOUSTON TO | Phone Sta, HZ | 3921-00
JOB NO.0/0/ | | CTE ENGINEERS | AWE++2 Dry | weather Pum | 25 7 of 9 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SUBJECT / | 14-95 | SHEET / | | | DESIGNED DATE | CHECKED | DATE | | Kmx = 201. P= 0.0039 | A=1,0029X | 12 x 85 " 0.40 in/ | 1 4ca-11 | | Koy = 84, Pring 0.0018 | A=0.0018X | 12×12 = 0,26 | #50CH
#5012H1 | | | A3=0.0035X1CX | | #,506 DWI | | Kiny = 31, Pmin 0.0018 | | =0.26 | #5012VE | | Pat Side Walls: 04 | = 13.5/9,67 | = 1.4 = 1.00 | - | | Free | | | | | 7 7 7 | 100pd \$ | \$6=1.0, | | | 6:9.67 | -1000ch Pi | 62=9.4 | | | B=7.6' | 五 差 | 6=9.4 | | | | ₹ 5 | ² = 90.4 | | | FIXEd / a=13.50 p=100 | p. 967 | | | | // | | | | | Mx = 0.2949×9.4+0.0662
Mx = 0.0324×9.4+0.0077
Mx = 0.2949×9.4+0.1157
My = 0.0324×9.4+0.0172 | x90,4 = 8,8 | 3/4 Mu= 1 | 14,9 44 | | M- = 0.2949 x 9,4+0.0077 | x 40.4 = 1.0
x 00.ch = 122 | = ,
= 7 | 1,7 14A
2.5 | | My = 0.032449,4+0.0172) | 1904 = 1.9 | = 5 | | | 1/3 - 2/2 2 1/4 | | | | | 15 = 213. P=0.0041 A3
15 = 24. Pmix=0.0018 A3 | 2014270 | #5060 | Corner | | Shx = 24. PMILEDIOUS 43 | = 0.26 me/# | #5 <i>e</i> /z | _ | | Kmy = 250 P=0.0049 A | = 0.56 m/f | #5@6d | who of. | | Kmy = 250 P=0.0049 Agy
Kmy = 36, P=0.0018 Agy | 30,26 11/4- | #5012 | VEF. | | Buoyancy Check:
Dead Loads; Wall | | | // | | Dead Loads; Wals | 1 2X14X8.6 | 7X0.150 = 3 | 6.4 K | | Bauslas | | (8,6/XV:130 = 2
X <i>1,33X0./5</i> 0 = 3 | 52.6 | | Joil: 2X1.0 | 0x15.0x8.67) | 10.06 =1 | 5.6 | | 2/0/1/2 54-0-100 | 1×18·83×8·67 | X0.06 = 9 | 1.0
36.3 KV | | Uead Loads; Wall
Bauslat
Soil: 2x1.0
1x1.0
Uplify Force = 18.8.
$\Delta \omega_{01} = 1.25 \times 164.5 - 1$ | > | .067 = 164.5° | k | | DWB1 = 1.25×164.5-1 | 36.3 - 69,3 k | =_ | | | Houston Tx STDs PROJECT LP SSC Pump Stn - HZ JOB NO.0104 | |---| | ETE ENGINEERS 4Wet + 2 Dry Weather Pumps 8 0F9 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. NMP 12-14-95 DESIGNED DATE CHECKED DATE | | Consider Dwal is available from wet well DL. | | Shear Transfer to wetwell thru two wall | | brackets Verwell = 69.3/2 = 3465 | | V. per wall = 69.3/2 = 34.65 K
Vu = 1.7×34.65 = 58.9 K (replife) | | Wall bracket: | | 0554me wef-well wall t=z-0 min.
'X=13-6 Y=915 | | $ \begin{array}{ccccccccccccccccccccccccccccccccccc$ | | | | L= \162+8.922-15.50'= 2.82 F. | | M= 58.9x 2.82 = 1.66 1k | | Ref: PGA, "Simplified Design" Shear walls, pg 6-13. | | 9 Mu - \$ [0.5 Azy fy low (1+ Par)(1- C) | | where F,=0 | | Azj= #58 (2 = 0.31x2x8 = 4,96 in 2
lw = 8.67 = 104" F= 12" | | lw = 8.67 = 104 h = 12" | | W = ASt X fy = 4.96 × 60 = 0.0596 | | Tw = W Zw + 0.85B, B,=85 for f=4000 | | - 0.050/2 - 0.021 | | $= \frac{0.0596}{0.1192 + 0.7225} = 0.071$ | | \$ Mx = 0.90 × 0.5 × 4.96 × 60 × 104 × 0.929 = 1078 1/2 | | Vu = 58.96/8. = 7.376/ff or per 1 \$\frac{166}{\pi\z!odw/.} | | 4/2 = 24.2 /dw/(Control) > V= 7.37//c/s/ | | 4 /c = 24.2 /dw/(Controls) \ Vn = 7.37 /dw/. (See Sht. 3 of | | | | | HOUST & | N, TX 57 | DS
IMP STN: HZ | 3921-00
JOB NO 0101 | |---|----------------------|------------------|-------------------|------------------------| | CTE ENGINEERS | 4Wef + 20
SUBJECT | ry weather | gumps | 9 of 9
SHEET | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SMP
DESIGNED | 12-14-95
DATE | CHECKED | DATE | | Consider Combined be | nding a | end She | ar of a | lowels: | | Mu = Vu xa = 0.5 | 0'X 7.37 | = 3-69 " | 14 | | | fst = 3,69
0.7854×0.5 | .3 = 37.5 | g ksl | | | | fsu = 7.37 x 60 | - = 16.3 | zksí | | | | $f_{S_U} = \frac{7.37 \times 60}{27.1}$ $f_{S_U} = \frac{7.37 \times 60}{27.1}$ | - 40.9 | 18 ksi (| 60 ksi. | | | I Shear Capacity of 19 | 6×2-0 c | /w/ in | base s | lab: | | \$ 1/c = 25.85 4/ dw | E12" 4.
1. | - , | | | | or of Ve = \$Ve cu Ge | where | \$Ve=1 | 5.2k c | le=8" | | <u>.</u> | Cw | = /, ns | 1300- | 101" | | dv = 15.26/1/2/- | Cc = | 1. h) | 1,3de = | 10,4 | | \$ V_c = 15.2 \(\frac{1}{2} \delta \land \ | _ Cont | ro/s 🔀 | Va= 4.66 | Jul. | | Base 5/ab: 0/6 = 1 | 7.83 : (| 0.66 | | | | 1 1 Wet | Zeplite. | 10×62.4 | = 62 | 4,0 | | 20=17.83 pb | - ,
- , | 1,33X/50 | 524 | PEF | | Fixed b= 13.5 t= 16" d= 16 | 95.5 | // | | ' | | Mx2 0.0695 X 95.5 = 6.64 | -3-1-2= 11. | 5" F=0.13 | E OC | | | mz=0.0274×95.5 = 2.62 | ± 4 | 4 = 3 | 86
33 |] | | My = 0.0898×95.5 = 8.58
My = 010473×95.5 = 4.52 | = /9 | f6 = 1.
7 25 | 11 R.O.O. | 0 382.61 | | My = 0.3874×7.07 = 2.74 k/s
hinge max | Vu=4. | 66440 | #60.
#508 | ZTEW
TEW | | | CITY OF HOUSTON, TX 3904-00 PROJECT JOB NO.0101 | |---|---| | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SUBJECT AWET & 2 DRY PUMPS SHEET | | | DESIGNED DATE CHECKED DATE | | WETWELL: TOP SLAB! Consider 2.04 thick | 5/a/ (3/4) | | Band Beam B1: 6= 3/10". | <i>11</i> | | (Between Hatches) t = 24" | d= 21 F= 1689 | | Loads; DL: W, = | 300 x 3.83 = 1150 #/4 | | W ₂ = . | 30 × 4.75 , = 150 | | 12. Wy = 3 | 300 x 8.58 = 2575 2/25
x/-4-290 | | | - W3 X1.7= 4.38 K/A K/A | | 7-10, 3-10, 4-8" 3-10, 7-10 | w, 2 w 7.36 k/A | | 7-10, 3-10, 4-8" 3-10, 7-10 | - " M= 92.8 × 13.5 = 1252.8 k
-21.74 × 6.75 =-146.7 | | W, 16.1×1.4; 22.54k 22.5 | 54/E - 2.84×6.75 =- 19.2 | | W2 2.1X1.4. 2.94 2.9 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | Waend 6.46 x 1.4 = 9.04 9.04 | 1 - 59.09×6.75 =-398.9 | | W4 36.05 × 1.7:61.29 61.29
TT 9852 98.5 | 7 (8:27) | | ud= 98.50-7.36(0.50+ | 1.75) Mu=98,50x14 = 1379 | | = 01,94~ | $ \begin{array}{rcl} -22.54x7' &=& 158. \\ -294x7' &=& 20.0 \end{array} $ | | 4/c= 103,9k | -2.69×1.17=- 3.0 | | Kn= 522 P=.0107.
Az=10.33in² | -9-04 × 10.08 = - 91.
-61-29 × 7, = -429. | | 13. +8 BoH | 1. @ 3/1 c/c - Mu = 6781/k 1/2 | | (in 46" | 1. @ 3/1 c/c - Mudes=1.3M/= 88/
width w/ 22 Side Cover). | | | - | |
 | | | | |-------------------------|-------------------------|----------------|-----------------| | C/TY
PROJECT | 3904 00
JOB NO. 0/0/ | | | | LiFI STA
SUBJECT 4 4 | O. 20 | | | | DESIGNED | 11-4-94
DATE | JAM
CHECKED | 11-8-94
DATE | Boud NOZ: Between 4 Hatches and Discharge pipes. L= \[13.5 - 4.812 \ X Z = 25,23 + 1.0 = 26.23 \ c/6 b= 8.44 -1.00 - 24 pripe -4.81 2.63 ft = 31.5 Sony 31. Loads: DL; 300 x 3.63' F = 1.13930 psf x 2.52 $= 76 \times 1.4 = 0.11$ LL: 300 x 6.15' $= 1845 \times 1.7 = 3.14$ $M_{21} = 4.77 \times 26.23/8 = 410.16$ Mules 1.3 Mac = 533/4 Vul = 4,77 (26.23-0.5-1.75) Fin = 468. P=.0095 PV = 0.85X2 14000 31XZ/=70. Muje 1.3 Mac = 5331/4 A3 = 6.18 m2 8 #8 @ 33" 46. Boff. Beau B3: between Hatches: b=1-42" t=24" W= DL = 300x 1.38 = 4/4 x1.4 = 580 30 x 4.50 =
135 x1.4 = 189. 2163 Wa 35/3.plf. l= 7.06° Mi 3.5 x 7,04/8 = 22 16 Mudes = 1-3 Mu = 28/k Pinni = 0.0033 Az 1.04m2 2#8T&BoH. Vu= 1236 (4Vc= 35-4k | | CITY OF
PROJECT | 3904 00
JOB NO. 0101 | | | |---|--|-------------------------|---------|-----------------| | | LIFT STN. W/O VALUE VAULT
SUBJECT 4 WET + 2DRY WE PHING | | | 21:
SHEET | | _ | DESIGNED | //- 7-94 | CHECKED | 11-8-94
DATE | VALVE PADS: A = 14/1 | 11 B = 24! 3" Th = 0.58 W = 12 5/ab LL (No frack) | 150psf x1.4 = 210 LL (No frack) | 150psf x1.7 = 255 300psf wh = 465psf. Ma: 0.081 x 0.465 x 14.04? 7.4 lk/4 Kn=116 MB: 0.010 x 0.465 x 24.25 = 2.7 lk/f VA = 0.89 x 0.465 x 14.04 = 2.91k/f min: 0.0037 Werr = 1.876/f A3: 0.3/m² #501280H EW 4508 Top Ew). Gr. Wall: Loads: Platform = 1.876/f (moss). Loads: Platform = 1.874/f (moss). wall = 0.38 2.254/f. b=10 = 7.25/sf (3.00/s). | | ,
T | | | -79 - | |---|-------------------|------------------|-------------|------------------------| | | PROJECT | of Hou. | STON | 3904-00
JOB NO.0/0/ | | ENGINEERS | Lift St | ation w, | / Vaults | 22 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | SUBJECT 40 | Wet + 2 Or | y Pumps | SHEET | | | NMP
DESIGNED | /-/9-95`
Date | CHECKED | DATE | | VALUE VALLT: | | | | <u> </u> | | Top Slab: Loads-24" Slatch LL: e3 | 66 1 |) = R | OPSFZ | / | | Hatch | e 30psf) | Y2.5 = 7 | 15 / 5x/ | 1.4 = 525 | | LL! @ 3 | 300 PSF | , = 30 | 0 2×17 | = 7/7. | | Right Vault:
L=27-9" ====1"
Mu=1.24x27.7578=119.9 | 6. | 17 W= .79 | 2) W | = 1242 | | L=27-9", d=21" | 1 F=0. | 441. | | , / | | Mu= 1.24×27.75/8=119,0 | 4 14/4 | | | | | Vu = 1.24 (-27.75-2.25) = | 14,474- | < P/2= | 0.85 XZ /40 | 12×21×00 | | Km= 270.7 | 3 | · = | 27.14/4 | <i>-</i> 21 | | Az=1.33.a | Aff # | -807",Bo | Hora (.1.4 | 46 jeus). | | Left Vault: | . 4 | 50 8 Tap | IW aug | y romsy, | #807 BoHow (1.46 Eu2). #508 Tap EW and Fransv. to #8.7(0.47m2/ff) 1 min = 0.0033 Az 0.83 #80/280 A. (0.79 m²/f-) WALLS: See Lift 5tm 3 Met + 2 dry Pumps. BASE SLAB: Loads: Top slab, DL 300 psf walls: 28.75 Consider Water table to be zep to firmsh grade. Design Engineer to Verify for looys flood if Critical repliff : 15.5 x 62,4 = 967; psf. | | | -8 | |---|---|-------------------------| | | PROJECT PROJECT | 3904-00
JOB NO. 0/01 | | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | 23
SHEET | | | DESIGNED DATE CHECKED | DATE | | | Dh = 24 Top Slab = 300 psf | 10 / | | | $DL : 24 \text{ Top Slab} = 300 \text{ psf}$ $12' \text{ Walls} = 195 \text{ n} 15'' \text{ walls} \rightarrow = 7$ $30'' \text{ Base Slab} = 375 \text{ n}$ | 44ps= | | | 870 ps 1 | | | | Consider 1-6" wide ftg outside. | 0 | | 1 | 28:75 x 20.5 | 7
— = /6/ps:f | | | Ibl = (20.5+20.5+31.75) × 1.5× 14.5× 60 pc
28.75×20.5
ZDL = 1031 psf 1 2!0 wide Ffg —: | ×=217p=1 | | | F5 = 1021 = 1,07 < 1.2 | ĺ | | | ZDL required = 1.2×967= 1160 psf | | | | Doetrapliff = 179 as & | | | | I Incocase twee 15" = 49psf +2 | | | | I Increase twell = 15" = 49psf +3 = 105 per = 1 | DL , | | | 12/5e | | | . | I Increase wall thickness, to=16" and fly to | 20" | | | Walls: 20.50' | | | | 20.50'
29.42 | j | | | $\frac{21.42}{70.424 \times 11. \times 1.33 \times 0.150} = 154.9^{26}$ $501/wf = 70.50$ | -=2 | | | 501/wf = 20.50 20,5×29.42 | 25 ps | | | 20:50
_33:42 | | | | 74.42 X14.5X2. X 60 bef = 129.5 | 214 ps A | | | 257 walle | () | | | 375 Base 6lab
2/4 Back Cil | | | | 1.146 psf # F.5= 1146 = 1.19=1. | 20- | | _ | | | | | | | | -8 I - | |---|---------------------|------------------------|----------------------------|---------------| | | PROJECT | OF HOL | | 3904-0 | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | LIH ST
SUBJECT 4 | ration W/
well zony | Vacets
Permos | 24
SHEET | | · · · · · · · · · · · · · · · · · · | NTMP
DESIGNED | 1-19-95
DATE | CHECKED | DATE | | Consider Base 5/ab a. all edges. LL Top slab wall 5 soil fill | 5 Two- | way 5 | lab him | ged at | | all edges. IL | = 300 | x/i | 7 = 510 | , | | wall 5 | = 300 | > × /,4 | <u> = 1080</u>
J = 1590 | _
\$5£ | | 5011 4://
 | = 214 | -lin | a 151 | <i>y</i> - 0 | | a = 20.50' $b = 27.75'$ $M = 6$ | P0150 | 0 TA | | | | | | 0.74 | | | | Mun = 1.59x20,52x0.0 | 61 = 40 | 0.8/4 | Kn= 63 | • | | Min = 1.59 x 27.75 x0.2 | 0/9= 23 | . 3 /5/H | | | | d=30-2-2-k=25 | 15 ± | = 0.650 | | | | ن تا این این این این این این این این این ای | - , / · | - 00 | | | Prim = 0,0033 Az=1.0in/f. #707 Top EW. #507"Boff EW. Smaller Vant: See 3 wet + Zan Prumps Life Station. 13 psf. P= 25,4 x0,5 = 12,70 (111) Wind-any direction | HOUSTON, TX STDS. | | | 3921-00
JOB NO.0101 | | |-------------------|----------------------|---------|------------------------|--| | CONTROL BUILDING | | | / OF 5 | | | VMP
DESIGNED | /Z - /9 - 95
DATE | CHECKED | DATE | | 2001slope 5V:12H = 22,50 W= 7psf (Horizontal projection) Dead loads: Asphalt shingles 5p"Gypsm Ceiling = 3psf Trusses e16" c/c. Approx wt = 3 pst Insulation = 2 pst Live load Wel = 16 psf WOLTH 3/psf. Win- load: Design Wind pressure POOF: where Ce=1.06, Exposured P= G G 9, I G = See Sketches. £ = 20.8psf for 90MPH \$ = 1.06×20.8×1.15 Cq (1) Wind perpendicular = 25,4 Cg p = 25.4 Cg = 7.62 Say 8 psf p = 25.4 Cg = 22.86 23 psf (ii) Wind-parallel to ridge 18 ps £ p = 25.4 Cg = 17.78 Cg:0.5 Wall: 21psf Cg=0.81 P = 25.4x0.8 = 20.32 | _ | | | | -03- | | |---|--------------------------|------------------|---------|------------------------|--| | | HOUSTO
PROJECT | N,Tx 3 | 705 | 3921-00
JOB NO.0101 | | | | CONTROL BUILDING SUBJECT | | | Z OF 5
SHEET | | | | NMP
DESIGNED | 12-19-95
DATE | CHECKED | DATE | | Wall Reaction Per truss: RDL = 15 ps f x 1.33 x 13.33 = 133 RLL = 16 ps f x 1.33 x 13.33 = 142* RWL = 8 x 1.33 x 13.33 x 1.92 = 62* RWL = - 23 x 1.33 x 13.33 x 7.92 = 476* RWL = - 18 x 1.33 x 13.33 x 1.25 = -22 * RDL + LL = 133 + 142 = 275 #. RDI-111+WL = 275+62-22=315 # RDI-WL = 133-176-22=-65# 215/1 Anchor Truss to 2"x6" wall plate w/ fer Truss Hurricane ties to take 65165 ziplift and 97165 lateral Force. Wall: Height of wall = h= 9-4", Wind load = 21 psf. Mes = 0.75 XZ/X 9.33 /2 = 171 A-16s/A (MR = 598 Ves = 0.75 XZ/X 9.33/2 = 73 16s/A V/Truss = 133×73=97 165 N=axial load = 275 lbs / Truss =-65/65 ZIP/itt/Touss. Neglecting axial load, 6"CM2 fom 1500 psi #50 Z4" Vert Reinf NOTE; Continue #5 e 24 Vert. Rein E. in to bond beam at top of wall. | | | | -84- | |--|---------------------------------------|-----------------------|-----------------------| | | HOUSTON, TX | | 3921-00
JOB NOO/O/ | | CTE ENGINEERS | CONTROL BLDO | Ġ | 3 0F 5
SHEET | | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. | NMP 12.2/-95
DESIGNED DATE | CHECKED | DATE | | Wall Top plate: And 58" | horad to ma. Dia x 12 Long at | 24"=/6 | w/ | | $M = 65 \times 24$ | 390 in-16. | | | | V = 65/2 = 38 /k | ~ ² | | | | 7×6 plate 5 = 5.50×1.= (southern Ping) 390 | = 2,06 in | | | | (Southern Ping) 390 = 189
Select Str. 1 = 390 = 189 | psi = 120 | o psi | | | V = 33 × 1.5 = 6 | psi { Fv = 95 pz | 55 . | | | Bond beam: | | | | | 8"XB" W/2#5 Lan
W+ = 0.67 X 0.67 X / | rs Con + w/2x6 | "Wall pl | ate | | W4 = 0.67×0.67×1 | 130pef = 58/bs | A | \ | | Lateral load per to | nss per wall | bs/Trus | SS > 68 lbs | | Hy= 25.4 x 9.33 x1. | 33 = 79/b//Truss | · | | | Hw Hw Hw Hw Hw Hw Hw Hw | M. 316 X 4.92 =
- 79. (0.67 + 2+. | 1555 | A-165
=-842 | | | 77, (5.47)~1. | | 1/2 A-165. | | 3 701-4=9-4 | 741 102 01 7 0 | Vw = 310 | 6 /bs. | | V= 37616 | 7.56 Wall 7 S = 7.12 × 12 = | | | | Bond Bm: 2#5 bars in | , , , , , , , , , , , , , , , , , , , | | 2 / 2 - 1000 | | pon- 10111 2110 8475 100 | OR = 0.9 | 3/w/fr = | = #7e8" | | | MR= 201 | 142 in-1.
42 x0.69 | 6/4 | | | OF MRW = 201 | × 0.75 | = 1500 n74 | | HOUSTO
PROJECT | ON, TE | 5705 | 3921-00
JOB NO.0101 | |-------------------|------------------|---------|------------------------| | CONTI
SUBJECT | ROL BL | | 40F5 | | NMP
DESIGNED | /2-21-95
DATE | CHECKED | DATE | Look-Outs : Upliff on look-out Un= 1.33 x 23=-31 lbs/4 WDL = 1.33 × 15 = 20/65/64 WLL = 1.33×16 = 22165/AJ MOLHIU, 42×2.08 2/2=91 ft-165 2×4," 5=3.063 mi f= 91x12 = 356 psi (= 1700 A/2 = 91 = +50 /65/ 1/2 = 42 × 1.83 = 38/65 V V2, = 38+50 - 58 lbs V_{2R}=38-50=-12 lbs 1 ziplift at W_{DL+WL}=-31+20=-11 b. V₁= 23 lbs 1 W_{W₁}=1/x2-08/2=24 1#. DV2 = 24 = ± 13 165 1/2 = 11×1.83 =-10/6s V2=-10-13=-23/6=1 V=-10+13= 3 165 Max, uplift at Wall = V, + V21 = -46 165 T Provide Huricane Strap between 2x4 Look-Outs and 286" wall plate. Anchor wall-plate w/ 50 \$ e 260 in to come Bond bear on top of wall- | HOU: | STON, TX | STDS | 3971-00
JOB NO. 0/0/ | |-------------------|------------------|---------|-------------------------| | CONT /
SUBJECT | ROL BLI | 6 | 5 OF S | | UMP
DESIGNED | 12-21-9.
DATE | CHECKED | DATE | End Wall: Consider wall with door opening H = 3/6/65 wind load on 3-4" wall length. M = 3/6×9.22 = 20/8 4-16= 40-9=31 Mu = 316×9.33 = 2948 A-165 Vus = 316 /bs. bt = 6"x34" d=31 Az= 0.3/in 1#5 Fa FaCE 7#5024 h/4 = 9.33 = 3.3 > 1.5 acts as Flexural Element-Allow Shear, Fo = VI500 = 35 psi Tu = 3/6 - 2.psi (2Fv = 17psi Assume Axial load Pro. fb. = 25 per. MR: for = 25 × 6×34=2408 > 0.75 Mw= 2211 ft-165, or MR = F. Azjd = 20000x0,31x0.8x31 = 12813 A-16= Wall load at Gr. Floor Level: Roof: W= 315/1.33 = 237 lbs/f. wall (40+2+40) × 9.33 = 765 Gr. Floor 8" slab = 100psf LL = 250 " 350 psfx2.0= 700lbs/ff Gr, Wall 1x2.0 x 150 p-f = 300 lbs/A- Allow. Soil bearing press = 2000psf L | HOUS to | 10, Tx, 57 | 25 | 3921-80
JOB NO.0101 |
-----------------|-----------------|--------|------------------------| | SUBJECT SUBJECT | ROL BLD | G | 6 of 6
SHEET | | MMP
DESIGNED | 1-22-96
DATE | CECKED | DATE | CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. Roof Sheathing: 58" Exterior grade Plywood on trucses @ 16 %. Consider & J (l= 2/2) Common nails. min. penetration = 2,50-0.63 = 1.87" 21BC Table 25G V = 78 165/mail. W/ 12"pen. 25H T = 41 16/nail/1" pen. Allowable V= 78 × 1.87/1.50 = 97 165 Allow+6/e T = 4/ x 1.87 = 76/bs. max 2/pliff = 23 psf x 1,33 = 31 lbs/ft along truss max shear = 14×21 ×2.75×7.21 = 66 16/4 along touss provide 8 d'emmon noil at 8" 4 along trass. (16" % shear and 16" Touston noils) Tallonable = 76 = 57 /6s/A > 31 /6s/A actual Vallowble = 97 = 73 163/4-> 66 164/4 actual | PLYWOOD NAILING | SCHEDULE | |--|----------------| | BOUNDARY NAILING | - 5d ● 4 O.C. | | PANEL EDGES WITHIN 5'-0'
OF ROOF EDGE @ EA. GABLE | - 8d ● 4 0.C. | | OTHER PANEL EDGES
& FIELD NAUING | - 8d - 6 0.C. | | ALL NALS SHALL BE CALYANIZE | D COMMON NAILS | # APPENDIX C TYPICAL ELECTRICAL DESIGN CALCULATION EXAMPLES #### VOLTAGE DROP CALCULATIONS - 1. Assume starting pump 3 with 2 pumps at full load and all auxiliaries on. (Pump 4 on standby). - 2. Use published full load amps and starting inrush amps at 460V on 480V system. - 3. Power factor 0.95. $$V_{1} = 480 - \left(\frac{801}{2}\right) \left(\frac{60 \text{ Ft}}{1000}\right) \left(0.101\right)$$ $$V_{1} = 477.6V \qquad V_{D1} = \frac{\left(480 - 477.6\right)}{480} = 0.50\%$$ $$V_{2} = V_{1} - \frac{\left(585\right)\left(80 \text{ Ft}\right)}{1000} \left(0.308\right)$$ $$V_{2} = 477.6 - 14.4$$ $$V_{2} = 463.2 \qquad V_{D2} = \frac{\left(480 - 463.2\right)}{480} = 3.50\%$$ #### POWER FACTOR CORRECTION CALCULATIONS #### PUMP DATA Rated Output - 77 HP (57 KW) Rated Input - 92A @ 460V (65 KW) Published PF @ 100% - 0.89 Published PF @ 50% -0.82 #### 100% LOAD Input KVA = (92)(0.46) \(\bar{3} = 73 \) KVA #### Input Conditions: $$KVAR_1 - \sqrt{73^2 - 65^2}$$ Check: $\alpha_1 = \cos^{-1}(0.89) = 27.1^{\circ}$ KVAR, = [sin (∞4)](73 KVA) = (0.456)(73) = <u>33.3</u> #### To Correct PF To 0.95 LAG: $$VA_2 = \frac{KW}{PF} = \frac{65}{0.95}$$ $$KVAR_2 = \sqrt{68.4^2 - 65^2}$$ Check: $$\alpha_2$$ - $\cos^{-1}(0.95)$ - 18.2° $$KVAR_2 = [sin(18.2)](68.4)$$ **-** <u>21.3</u> ### Standard Commercial Sizes --> 10 KVAR or 15 KVAR #### Using 10 KVAR Correction: #### Using 15 KVAR Correction: #### 50% LOAD 100% Input KW = 65KW --> 50% Input KW = 65 KW/2 = 32.5 KW 50% PF = 0.82 --> KVA_{50%} = $$\frac{32.5}{0.82}$$ = 39.6 KVA #### Using 10 KVAR Correction: #### Using 15 KVAR Correction: #### USE 15 KVAR CAPACITORS USING 15 KVAR CAPACITORS: $$I_c = \frac{15 \text{ KVAR}}{(0.48)\sqrt{3}} = 18A$$ Per NEC 460-8: Minimum capacitor conductor ampacities --> of 135% of I_c or 33% of motor circuit conductors $$I_c \times 135\% = (18)(1.35) = 24.3$$ Motor conductor ampacity (*1) = 130A 130A /3 = 43.3A - Minimum Use *8 CU capacitor conductors ## **LOAD CALCULATIONS** | | MOTOR CONTROL CENTER | | | | | | |---------|------------------------------|--------|-----|--|--|--| | CIRCUIT | DESCRIPTION | HP/KVA | FLA | | | | | 1 | MAIN BREAKER | | | | | | | 2 | PUMP NO. 1 | 75 HP | 96 | | | | | 3 | PUMP NO. 2 | 75 HP | 96 | | | | | 4 | PUMP NO. 3 | 75 HP | 96 | | | | | 5 | PUMP NO. 4 | 75 HP | 96 | | | | | 6 | AIR CONDITIONER | 10 HP | 14 | | | | | 7 | 7 LIGHTING TRANSFORMER 5 KVA | | | | | | | | TOTAL | | 408 | | | | | | LIGHTING PANE | L | | |-----------|---------------------|------|-------| | CIRCUIT | DESCRIPTION | WA. | ΠS | | 1 | CONTROL POWER | 200 | | | 2 | MCC HEATER | 150 | | | 3 | PLC | | 250 | | 4 | AIR COMPRESOR | | 500 | | 5 | LIGHTS | 170 | | | 6 | SPARE | 500 | | | 7 | BUILDING RECPTACLES | | 360 | | 8 | SPARE | | 500 | | 9 | SPARE | 500 | | | 10 | SPARE | 500 | | | 11 | SPACE | | 500 | | 12 | SPACE | | 500 | | TOTAL WA | ΠS | 4630 | WATTS | | SERVICE V | OLTAGE | 240 | VOLTS | | TOTAL AM | PERES | 19 | AMPS | # FAULT CALCULATIONS | STATION TYPE | 4 P | UMPS@ | 75 l | HP (KVA) | | |---|----------------------------|---|--|--|---| | SERVICE VOLTAGE
TRANSFORMER KVA
XFORMER Z — POLE MTD
XFORMER Z — PAD MTD | 480
500
0.02
0.03 | BASE KV
USED AS BA | 0.48
ASE KVA | | | | FEEDERS — MAIN PUMPS AIR CONDITIONING LIGHTING PANEL | NO.
3
1
1 | <u>AWG</u>
- 350
- 1/0
- 6
- 6 | LENGTH
100
50
20
20 | <u>Z tot</u>
0.002063
0.0067
0.00988
0.00988 | <i>Z pu</i>
0.0045
0.0145
0.0214
0.0214 | | <u>LOADS</u>
PUMPS
AIR CONDITIONING | | . KVA
. 75
10 | <u>Z pu</u>
1.6667
12.5000 | | | | EQUIVALENT Z pu XFORMER & FEEDER ALL PUMPS N-1 PUMPS AIR CONDITIONING | | POLE MTD
0.0245
2.3792
1.7844
12.5214 | <u>!</u> | P <u>AD MTD</u>
0.0345 | | | | | POLE | MTD | PAD N | <i>ITD</i> | | FAULT CURRENTS MAIN BUS AT MOTOR AT LIGHTING PANEL | | <u>Z tot</u>
0.0242
0.0386
0.0456 | <u>/ sc</u>
24870
15564
13182 | <u>Z tot</u>
0.0339
0.0483
0.0553 | <u>/ sc</u>
17744
12458
10869 | #### SHORT CIRCUIT CALCULATIONS # C-3300 # **ELECTRICAL DATA** F 11 SUPERSEDES ISSUED 4/86 2/88 #### MOTOR DATA | 120 (90) | 3 | 460
575 | 140
112 | 1030/765
824/612 | 609 | F | 100 | 4/1775 | |------------------------------------|----|-------------------|----------------------|------------------------------|------------------------|-----------------------|---------------------------------|-----------| | 88 (66) | 3 | 460
575 | 108
86 | 590/445
472/356 | 354 | , D | 73 | 4/1770 | | 77 (57) | 3_ | <u>460</u>
575 | 92 | 585/375
468/300 | 298 | С . | 65 | 6/1170 | | 8 Pole
60 (45) | 3 | 460
575 | 81
65 | 380/243
304/194 | 193 | В | 52 | 8/875 | | 6 Pale
60 (45) | 3 | 460
575 | 72
58 | 445/287
356/230 | 228 | С | 51 | 6/1165 | | 32 (24) | 3 | 460
575 | 42
34 | 234/164
187/131 | 131 | Đ | 27 | 8/875 | | Rated
Output
Power
HP(Kw) | ø | Vnom | Full
Load
Amps | Starting
Amps
Surge/LR | Locked
Rotor
KVA | NEC
Code
Letter | Rated
Input
Power
(Kw) | Poles/RPM | | Pump Motor | | EFFICIENCY | | POWER FACTOR | | | |---|--|--|--|--|--|--| | HP | 100% Load | 75% Load | 50% Load | 100% Load | 75% Load | 50% Load | | 32
60(6 Pole)
60(8 Pole)
77
88
120 | 87.5
88.5
87.5
87.7
90.0
90.0 | 86.9
88.5
88.0
87.5
90.0
90.0 | 84.2
86.8
86.5
86.8
88.0
88.5 | 0.82
0.89
0.82
0.89
0.85
0.89 | 0.78
0.87
0.79
0.87
0.82
0.87 | 0.70
0.82
0.71
0.82
0.75
0.81 | #### CABLE DATA | HP x Volts | Max. Length ft. | Gauge | Nominal Dia. | Conductors (| |------------------------|-----------------|---------------|----------------|--| | 32 x 460 | 630 | #4/3-2-1-GC | 33.8mm (1.33") | (3) #4 AWG (PWR) | | 32 x 575 | 970 | #4/3-2-1-GC | 33.8mm (1.33") | (2) #10 AWG (CTR | | 60 x 460 | 240 | #4/3-2-1-GC | 33.8mm (1.33") | (1) #6 AHG (GND) | | 60 x 575 | 340 | #4/3-2-1-GC | 33.8mm (1.33") | (1) #10 AHG (G.C | | 77 x 460 | 560 | #1/3-2-1-GC | 41.7mm (1.64") | (3) #1 AWG (PWR) | | 77 x 575 | 840 | #1/3-2-1-GC | 41.7mm (1.64") | (2) #10 AWG (CTR | | 88 x 460 | 480 | #1/3-2-1-GC | 41.7mm (1.64") | (1) #1 AWG (GND) | | 88 x 575 | 720 | #1/3-2-1-GC | 41.7mm (1.64") | (1) #8 AWG (G.C. | | 120 x 460
120 x 575 | 475
745 | #0/3-0-2-GC | 42.0mm (1.65") | (3) #0 AWG (PWR)
(2) #5 AWG (GND)
(1) #5 AWG (G.C. | | 120 | Pilot Cable | <u>#</u> 14/7 | 17.8mm (0.70") | (7) #14 AHG |